首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Static frictional indentation of an elastic half-plane by a rigid unsymmetrical punch
Authors:L M Brock  H G Georgiadis  N Charalambakis
Institution:(1) Dept of Engineering Mechanics, University of Kentucky, 40506-0046 Lexington, KY, USA;(2) Mechanics Division, School of Technology, Aristotle University of Thessaloniki, Campus Box 422, 54006, Greece
Abstract:Static rigid 2-D indentation of a linearly elastic half-plane in the presence of Coulomb friction which reverses its sign along the contact length is studied. The solution approach lies within the context of the mathematical theory of elastic contact mechanics. A rigid punch, having an unsymmetrical profile with respect to its apex and no concave regions, both slides over and indents slowly the surface of the deformable body. Both a normal and a tangential force may, therefore, be exerted on the punch. In such a situation, depending upon the punch profile and the relative magnitudes of the two external forces, a point in the contact zone may exist at which the surface friction changes direction. Moreover, this point of sign reversal may not coincide, in general, with the indentor's apex. This position and the positions of the contact zone edges can be determined only by first constructing a solution form containing the three problem's unspecified lengths, and then solving numerically a system of non-linear equations containing integrals not available in closed form.The mathematical procedure used to construct the solution deals with the Navier-Cauchy partial differential equations (plane-strain elastostatic field equations) supplied with boundary conditions of a mixed type. We succeed in formulating a second-kind Cauchy singular integral equation and solving it exactly by analytic-function theory methods.Representative numerical results are presented for two indentor profiles of practical interest—the parabola and the wedge.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号