首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Emergence of the genuine Johari-Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure
Authors:Hensel-Bielówka S  Paluch M  Ngai K L
Institution:Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland.
Abstract:The dielectric spectra of the glass former, m-fluoroaniline (m-FA), at ambient pressure show the presence of a secondary relaxation, which was identified in the literature as the universal Johari-Goldstein (JG) beta relaxation. However, published elastic neutron scattering and simulation data D. Morineau, C. Alba-Simionesco, M. C. Bellisent-Funel, and M. F. Lauthie, Europhys. Lett. 43, 195 (1998); D. Morineau and C. Alba-Simionesco, J. Chem. Phys. 109, 8494 (1998)] showed the presence of hydrogen-bond-induced clusters of limited size in m-FA at ambient pressure and temperature of the dielectric measurements. The observed secondary relaxation may originate from the hydrogen-bond-induced clusters. If so, it should not be identified with the JG beta relaxation that involves essentially all parts of the molecule and has certain characteristics K. L. Ngai and M. Paluch, J. Chem. Phys. 120, 857 (2004)], but then arises the question of where is the supposedly universal JG beta relaxation in m-FA. To gain a better understanding and resolving the problem, we perform dielectric measurements at elevated pressures and temperatures to suppress the hydrogen-bond-induced clusters and find significant changes in the dielectric spectra. The secondary relaxation observed at ambient pressure in m-FA is suppressed, indicating that indeed it originates from the hydrogen-bond-induced clusters. The spectra of m-FA are transformed at high temperature and pressure to become similar to that of toluene. The new secondary relaxation that emerges in the spectra has properties of a genuine JG relaxation like in toluene.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号