首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog
Authors:Brilliantov Nikolai V  Pöschel Thorsten
Institution:Institute of Physics, University Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
Abstract:We study the diffusion of tracers (self-diffusion) in a homogeneously cooling gas of dissipative particles, using the Green-Kubo relation and the Chapman-Enskog approach. The dissipative particle collisions are described by the coefficient of restitution epsilon which for realistic material properties depends on the impact velocity. First, we consider self-diffusion using a constant coefficient of restitution, epsilon=const, as frequently used to simplify the analysis. Second, self-diffusion is studied for a simplified (stepwise) dependence of epsilon on the impact velocity. Finally, diffusion is considered for gases of realistic viscoelastic particles. We find that for epsilon=const both methods lead to the same result for the self-diffusion coefficient. For the case of impact-velocity dependent coefficients of restitution, the Green-Kubo method is, however, either restrictive or too complicated for practical application, therefore we compute the diffusion coefficient using the Chapman-Enskog method. We conclude that in application to granular gases, the Chapman-Enskog approach is preferable for deriving kinetic coefficients.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号