首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Updating approximate principal components with applications to template tracking
Authors:Geunseop Lee  Jesse Barlow
Institution:Department of Computer Science and Engineering, The Pennsylvania State University, State College, PA, USA
Abstract:Adaptive principal component analysis is prohibitively expensive when a large‐scale data matrix must be updated frequently. Therefore, we consider the truncated URV decomposition that allows faster updates to its approximation to the singular value decomposition while still producing a good enough approximation to recover principal components. Specifically, we suggest an efficient algorithm for the truncated URV decomposition when a rank 1 matrix updates the data matrix. After the algorithm development, the truncated URV decomposition is successfully applied to the template tracking problem in a video sequence proposed by Matthews et al. IEEE Trans. Pattern Anal. Mach. Intell., 26:810‐815 2004], which requires computation of the principal components of the augmented image matrix at every iteration. From the template tracking experiments, we show that, in adaptive applications, the truncated URV decomposition maintains a good approximation to the principal component subspace more efficiently than other procedures.
Keywords:active appearance model  principal components  template tracking  truncated bidiagonal reduction  truncated URV decomposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号