首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectral and surface investigations of Ca2V2O7:Eu3+ nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes
Authors:Vinay Kumar  A K Bedyal  J Sharma  V Kumar  O M Ntwaeaborwa  H C Swart
Institution:1. School of Physics, Shri Mata Vaishno Devi University, Katra, 182320, J&K, India
2. Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Abstract:In the present work, red-emitting Ca2V2O7:xEu3+ (x = 0.5–6.0 mol%) nanophosphors, in the form of powders, were synthesized by the citrate-gel combustion method using metal nitrates as precursors and citric acid as fuel. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were used to study the structure, morphology and spectral properties of the samples. The chemical compositions and electronic states of the powders were analyzed with X-ray photoelectron spectroscopy. The average crystallite sizes estimated using the XRD data were found to be in the range of 30–45 nm, and were cross verified by TEM. The lattice parameters determined by the POWD program were approximated as a = 7.242 Å, b = 6.674 Å, c = 6.932 Å and V = 291.24 Å3, respectively. Under UV (395 nm) (PL) and electron (CL) excitation, the nanophosphors show characteristic emission from the Eu3+ ion (5D0 → 7Fj, j = 1–5) with the main peaks at 612 and 616 nm. The maximum emission intensity was recorded from the sample with an Eu3+ concentration of 4 mol% and a critical energy distance of 19.084 Å between the donor and the acceptor. Above this concentration, there was a reduction in the intensity due to dipole–dipole induced concentration quenching effects. The potential applications of this phosphor as a high color-purity phosphor in light-emitting diodes are evaluated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号