首页 | 本学科首页   官方微博 | 高级检索  
     


A model for solute transport following an abrupt pressure impact in saturated porous media
Authors:Shaul Sorek
Affiliation:(1) Water Resource Research Center, J. Blaustein Institute for Desert Research, 84993 Sede Boker Campus, Israel;(2) Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
Abstract:A mathematical model is developed of an abrupt pressure impact applied to a compressible fluid with solute, flowing through saturated porous media. Nondimensional forms of the macroscopic balance equations of the solute mass and of the fluid mass and momentum lead to dominant forms of these equations. Following the onset of the pressure change, we focus on a sequence of the first two time intervals at which we obtain reduced forms of the balance equations. At the very first time period, pressure is proven to be distributed uniformly within the affected domain, while solute remains unaffected. During the second time period, the momentum balance equation for the fluid conforms to a wave form, while the solute mass balance equation conforms to an equation of advective transport. Fluid's nonlinear wave equation together with its mass balance equation, are separately solved for pressure and velocity. These are then used for the solution of solute's advective transport equation. The 1-D case, conforms to a pressure wave equation, for the solution of fluid's pressure and velocity. A 1-D analytical solution of the transport problem, associates these pressure and velocity with an exponential power which governs solute's motion along its path line.
Keywords:abrupt pressure change  saturated deformable porous media  Newtonian-compressible fluid  homogeneous  isentropic and isotropic conditions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号