首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transient ordering in a quasi-two-dimensional liquid near freezing
Authors:Sheu Alice Shu-Yao  Rice Stuart
Institution:Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
Abstract:We report the results of a theoretical study of locally ordered fluctuations in a quasi-two-dimensional colloid fluid. The fluctuations in the equilibrium state are monitored by the aperture cross-correlation function of radiation scattered by the fluid, as calculated from molecular dynamics simulations of near hard spheres with diameter sigma confined between smooth hard walls. These locally ordered fluctuations are transient; their decay can be monitored as a function of the time between the cross-correlated scattered radiation signals, but only the single-time cross-correlated signals are discussed in this paper. Systems with thicknesses less than two hard sphere diameters were studied. For wall separation H in the range 1 sigma/=1.57 sigma, hexagonal fluctuations persist in the dense liquid up to H=1.75 sigma, and fluctuations with square ordered symmetry, that of the solid to which the liquid freezes, only emerge at densities approximately 2% below freezing. For H=1.8 sigma and 1.85 sigma, hexagonal ordered flucuations are no longer found, and the square ordered fluctuations dominate the dense liquid region as the system freezes into a two layer square solid. For H=1.9 sigma and 1.95 sigma, where the liquid freezes into a two layer hexagonal solid, both square and hexagonal ordered fluctuations are observed. At lower densities, the ordered fluctuations only exhibit square symmetry. Hexagonal ordered fluctuations appear at densities approximately 7% below freezing and become more dominant as the density is increased, but the square ordered fluctuations persist until the system is converted into the solid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号