首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Total synthesis of everninomicin 13,384-1--Part 1: retrosynthetic analysis and synthesis of the A1B(A)C fragment
Authors:Nicolaou K C  Rodríguez R M  Mitchell H J  Suzuki H  Fylaktakidou K C  Baudoin O  van Delft F L
Institution:Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. kcn@scripps.edu
Abstract:In this first of a series of four articles we introduce everninomicin 13,384-1 (1), a powerful antibiotic effective against drug resistant bacteria, as a target for total synthesis and discuss its retrosynthetic analysis. From the three defined fragments required for the synthesis (2: A1B(A)C fragment; 4: DE fragment; 5: FGHA2 fragment), we describe herein two approaches to the A1B(A)C block. The first strategy relied on an olefin metathesis reaction to construct a common intermediate for rings B and C, but was faced with final protecting group problems. The second, and successful approach, involved a 1,2-phenylsulfeno migration and a sulfur directed glycosidation procedure to link rings B and C, as well as an acyl fluoride intermediate to install the sterically hindered aryl ester moiety (ring A1). The final stages of the synthesis of the required 2-phenylseleno glycosyl fluoride 2 required introduction of a phenylseleno group at C-1 of ring C followed by a novel, DAST-promoted 1,2-migration to produce the desired 2-beta-phenylseleno glycosyl fluoride moiety.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号