首页 | 本学科首页   官方微博 | 高级检索  
     


Correlation of Spatial and Temporal Filtering Methods for Turbulence Quantification in Spark-Ignition Direct-Injection (SIDI) Engine Flows
Authors:Lewis?Gene?Clark  author-information"  >  author-information__contact u-icon-before"  >  mailto:lewis@unsw.edu.au"   title="  lewis@unsw.edu.au"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,Sanghoon?Kook
Affiliation:1.School of Mechanical and Manufacturing Engineering,The University of New South Wales,Sydney,Australia
Abstract:High-speed particle image velocimetry (HSPIV) was applied to an optical spark-ignition direct-injection engine in order to analyse various turbulent properties of the flow-field. The engine was motored at 1200 RPM with an intake pressure of 100 kPa, while HSPIV images were acquired at a sampling frequency of 5 kHz on both a vertical (tumble) plane and a horizontal (swirl) plane. The flow was decomposed in mean and fluctuating components via three different methods — ensemble averaging, spatial filtering, and temporal filtering. It was found that the velocity fluctuations calculated via the ensemble average method were more closely linked to low-frequency rather than high-frequency fluctuations, suggesting that they are more representative of cycle-to-cycle variation rather than true turbulence. Visual inspection of the high-frequency fluctuating flow-fields derived through the two filter based approaches revealed turbulent structures of similar size, shape and distribution. To equate the two filtering methods quantitatively, a spatial filter was designed with a mean flow speed scaled cut-off length, which was tuned in order to match the turbulent kinetic energy (TKE) of a 300 Hz temporal filter. A brief case study was then performed on a fuel-injected operating condition, run at the same 1200 RPM engine speed and 100 kPa intake pressure. A 1:1 split ratio dual-injection strategy was employed, with the first injection at 300°CA bTDC and the second injection at 110°CA bTDC. The relatively late second injection was found to significantly increase both the mean and turbulent velocities present in the flow-field in comparison to the motored condition, with TKE magnitudes being ~5 to 10 fold higher, depending on the choice of cut-off length.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号