首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Local Limit of the Uniform Spanning Tree on Dense Graphs
Authors:  Email author" target="_blank">Asaf?NachmiasEmail author  Tuan?Tran
Institution:1.Institut für Geometrie,TU Dresden,Dresden,Germany;2.Department of Mathematical Sciences,Tel Aviv University,Tel Aviv,Israel;3.Department of Mathematics,ETH,Zurich,Switzerland
Abstract:Let G be a connected graph in which almost all vertices have linear degrees and let \(\mathcal {T}\) be a uniform spanning tree of G. For any fixed rooted tree F of height r we compute the asymptotic density of vertices v for which the r-ball around v in \(\mathcal {T}\) is isomorphic to F. We deduce from this that if \(\{G_n\}\) is a sequence of such graphs converging to a graphon W, then the uniform spanning tree of \(G_n\) locally converges to a multi-type branching process defined in terms of W. As an application, we prove that in a graph with linear minimum degree, with high probability, the density of leaves in a uniform spanning tree is at least \(e^{-1}-\mathsf {o}(1)\), the density of vertices of degree 2 is at most \(e^{-1}+\mathsf {o}(1)\) and the density of vertices of degree \(k\geqslant 3\) is at most \({(k-2)^{k-2} \over (k-1)! e^{k-2}} + \mathsf {o}(1)\). These bounds are sharp.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号