首页 | 本学科首页   官方微博 | 高级检索  
     


The Log-Linear Birnbaum-Saunders Power Model
Authors:Guillermo?Martínez-Flórez,Heleno?Bolfarine,Héctor?W.?Gómez  mailto:hector.gomez@uantof.cl"   title="  hector.gomez@uantof.cl"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Departamento de Matemática y Estadística, Facultad de Ciencias Básicas,Universidad de Córdoba,Córdoba,Colombia;2.Departamento de Estatítica, IME,Universidade de S?o Paulo,S?o Paulo,Brazil;3.Departamento de Matemáticas, Facultad de Ciencias Básicas,Universidad de Antofagasta,Antofagasta,Chile
Abstract:
In this paper the sinh-power model is developed as a natural follow up to the log-linear Birnbaum-Saunders power model. The class of models resulting, incorporates the sinh-power-normal model, the ordinary sinh-normal model and the log-linear Birnbaum-Saunders model (Rieck and Nedelman, Technometrics 33:51–60, 1991). Maximum likelihood estimation is developed with the Hessian matrix used for standard error estimation. An application is reported for the data set on lung cancer studied in Kalbfleisch and Prentice (2002), where it is shown that the log-linear Birnbaum-Saunders power-normal model presents better fit than the log-linear Birnbaum-Saunders model. Another application is devoted to a fatigue data set previously analyzed in the literature. A nonlinear Birnbaum-Saunders power-normal model is fitted to the data set, with satisfactory performance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号