首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of silicon nanocomposite for printable photovoltaic devices on flexible substrate
Authors:Email author" target="_blank">E?A?OdoEmail author  A?A?Faremi
Institution:1.Department of Physics,Federal University Oye-Ekiti,Oye-Ekiti,Nigeria
Abstract:Renewed interest has been established in the preparation of silicon nanoparticles for electronic device applications. In this work, we report on the production of silicon powders using a simple ball mill and of silicon nanocomposite ink for screen-printable photovoltaic device on a flexible substrate. Bulk single crystalline silicon was milled for 25 h in the ball mill. The structural properties of the produced silicon nanoparticles were investigated using X-ray diffraction (XRD) and transmission electron microscopy. The results show that the particles remained highly crystalline, though transformed from their original single crystalline state to polycrystalline. The elemental composition using energy dispersive X-ray florescence spectroscopy (EDXRF) revealed that contamination from iron (Fe) and chromium (Cr) of the milling media and oxygen from the atmosphere were insignificant. The size distribution of the nanoparticles follows a lognormal pattern that ranges from 60 nm to about 1.2 μm and a mean particle size of about 103 nm. Electrical characterization of screen-printed PN structures of the nanocomposite formed by embedding the powder into a suitable water-soluble polymer on Kapton sheet reveals an enhanced photocurrent transport resulting from photo-induced carrier generation in the depletion region with energy greater that the Schottky barrier height at the metal-composite interface.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号