Computational Evaluation of Me2TCCP as Lewis Acid |
| |
Authors: | Julius J. Roeleveld Dr. Andreas Wolfgang Ehlers Dr. Tiddo Jonathan Mooibroek |
| |
Affiliation: | van ‘t Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands |
| |
Abstract: | Supramolecular adducts between dimethyl-2,2,3,3-tetracyanocyclopropane (Me2TCCP) with 21 small (polar) molecules and 10 anions were computed with DFT (B3LYP-D3/def2-TZVP). Their optimized geometries were used to obtain interaction energies, and perform energy decomposition and ‘atoms-in-molecules’ analyses. A set of 38 other adducts were also evaluated for comparison purposes. Selected examples were further scrutinized by inspection of the molecular electrostatic potential maps, Noncovalent Interaction index plots, the Laplacian, the orbital interactions, and by estimating the Gibbs free energy of complexation in hexane solution. These calculations divulge the thermodynamic feasibility of Me2TCCP adducts and show that complexation is typically driven by dispersion with less polarized partners, but by orbital interactions when more polarized or anionic guests are deployed. Most Me2TCCP adducts are more stable than simple hydrogen bonding with water, but less stable than traditional Lewis adducts involving Me3B, or a strong halogen bond such as with Br2. Several bonding analyses showed that the locus of interaction is found near the electron poor sp3-hydridized (NC)2C−C(CN)2 carbon atoms. An empty hybrid σ*/π* orbital on Me2TCCP was identified that can be held responsible for the stability of the most stable adducts due to donor-acceptor interactions. |
| |
Keywords: | noncovalent interactions intermolecular interaction tetrel bonding density functional calculation molecular recognition |
|
|