首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group
Authors:Olajumoke Adeyiga  Dr Samuel O Odoh
Institution:Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216 USA
Abstract:Copper-exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over-oxidation products like CO and CO2. However, mechanistic pathways for methane over-oxidation by copper-oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over-oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over-oxidation by Cu3O3]2+ active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C?H bond can be stabilized at a μ-oxo atom of the active site. This μ-(O?CH3) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper-monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper-monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction step must be stabilized away from copper-oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper-oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane-to-methanol conversion.
Keywords:copper-exchanged zeolites  Cu?MOR  carbon monoxide  over-oxidation  DFT  methane activation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号