首页 | 本学科首页   官方微博 | 高级检索  
     


Elastic Organic Crystals Based on Barbituric Derivative: Multi-faceted Bending and Flexible Optical Waveguide
Authors:Dr. Jiang Peng  Jiakun Bai  Xiumian Cao  Jieting He  Prof. Weiqing Xu  Dr. Junhui Jia
Affiliation:1. Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China;2. Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China

These authors contributed equally to this work.;3. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China

College of Physics, Jilin University, Changchun, China;4. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China

Abstract:Elastic organic single crystals with light-emitting and multi-faceted bending properties are extremely rare. They have potential application in optical materials and have attracted the extensive attention of researchers. In this paper, we reported a structurally simple barbituric derivative DBDT , which was easily crystallized and gained long needle-like crystals (centimeter-scale) in DCM/CH3OH (v/v=2/8). Upon applying or removing the mechanical force, both the (100) and (040) faces of the needle-like crystal showed reversible bending behaviour, showing the nature of multi-faceted bending. The average hardness (H) and elastic modulus (E) were 0.28±0.01 GPa and 4.56±0.03 GPa for the (040) plane, respectively. Through the analysis of the single crystal data, it could be seen that the van der waals (C−H⋅⋅⋅π and C−H⋅⋅⋅C), H-bond (C−H⋅⋅⋅O) and π⋅⋅⋅π interactions between molecules were responsible for the generation of the crystal elasticity. Interestingly, elastic crystals exhibited optical waveguide characteristics in straight or bent state. The optical loss coefficients measured at 627 nm were 0.7 dBmm−1 (straight state) and 0.9 dBmm−1 (bent state), while the optical loss coefficient (α) were 1.5 dBmm−1 (straight state) and 1.8 dBmm−1 (bent state) at 567 nm. Notably, the elastic organic molecular crystal based on barbituric derivative could be used as the candidate for flexible optical devices.
Keywords:barbituric derivativeelastic crystal  elastic modulus  multi-faceted bending  optical waveguide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号