首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic-Liquid Films and Co3O4(111) Thin Films
Authors:Dr Katrin Forster-Tonigold  Dr Jihyun Kim  Dr Joachim Bansmann  Prof?Dr Axel Groß  Dr Florian Buchner
Institution:1. Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm, Germany;2. Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
Abstract:In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI), Li and a Co3O4(111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li-ion batteries (LIBs). We employed mostly X-ray photoelectron spectroscopy (XPS) in combination with dispersion-corrected density functional theory calculations (DFT-D3). If the surface is pre-covered by BMP-TFSI species (model electrolyte), post-deposition of Li (Li+ ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li2NSO2CF3, LiF, Li2S, Li2O2, Li2O, but also kinetic products like Li2NCH3C4H9 or LiNCH3C4H9 of BMP. Simultaneously, Li adsorption and/or lithiation of Co3O4(111) to LinCo3O4 takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co0 could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.
Keywords:cobalt oxide  density functional theory  ionic liquids  solid electrolyte interphase  surface chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号