首页 | 本学科首页   官方微博 | 高级检索  
     


A preconditioned low‐rank CG method for parameter‐dependent Lyapunov matrix equations
Authors:Daniel Kressner  Martin Plešinger  Christine Tobler
Affiliation:1. ANCHP, MATHICSE, EPF Lausanne, , Lausanne, Switzerland;2. Department of Mathematics and Didactics of Mathematics, TU Liberec, , Liberec, Czech Republic
Abstract:This paper is concerned with the numerical solution of symmetric large‐scale Lyapunov equations with low‐rank right‐hand sides and coefficient matrices depending on a parameter. Specifically, we consider the situation when the parameter dependence is sufficiently smooth, and the aim is to compute solutions for many different parameter samples. On the basis of existing results for Lyapunov equations and parameter‐dependent linear systems, we prove that the tensor containing all solution samples typically allows for an excellent low multilinear rank approximation. Stacking all sampled equations into one huge linear system, this fact can be exploited by combining the preconditioned CG method with low‐rank truncation. Our approach is flexible enough to allow for a variety of preconditioners based, for example, on the sign function iteration or the alternating direction implicit method. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:Lyapunov equations  CG method  preconditioning  ADI preconditioner  sign function preconditioner  tensors in Tucker format  model reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号