Fine-Tuning the Endcap Chemistry of Acrylated Poly(Ethylene Glycol)-Based Hydrogels for Efficient Burn Wound Exudate Management |
| |
Authors: | Manon Minsart Nicolas Deroose Laurens Parmentier Sandra Van Vlierberghe Arn Mignon Peter Dubruel |
| |
Affiliation: | 1. Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-bis, Ghent, 9000 Belgium;2. Smart Polymeric Biomaterials Research Group, Biomaterials and Tissue Engineering (SIEM) @ Campus Group T Leuven, Andreas Vesaliusstraat 13, Leuven, 3000 Belgium |
| |
Abstract: | Most commercial dressings with moderate to high exudate uptake capacities are mechanically weaker and/or require a secondary dressing. The current research article focuses on the development of hydrogel-based wound dressings combining mechanical strength with high exudate absorption capacities using acrylate-endcapped urethane-based precursors (AUPs). AUPs with varying poly(ethylene glycol) backbone molar masses (10 and 20 kg mol−1) and endcap chemistries are successfully synthesized in toluene, subsequently processed into UV-cured hydrogel sheets and are benchmarked against several commercial wound dressings (Hydrosorb, Kaltostat, and Mepilex Ag). The AUP materials show high gel fractions (>90%) together with strong swelling degrees in water, phosphate buffered saline and simulated wound fluid (12.7–19.6 g g−1), as well as tunable mechanical properties (e.g., Young's modulus: 0.026–0.061 MPa). The AUPs have significantly (p < 0.05) higher swelling degrees than the tested commercial dressings, while also being mechanically resistant. The elasticity of the synthesized materials leads to an increased resistance against fatigue. The di- and hexa-acrylated AUPs show excellent in vitro biocompatibility against human foreskin fibroblasts, as evidenced by indirect MTS assays and live/dead cell assays. In conclusion, the processed AUP materials demonstrate high potential for wound healing application and can even compete with commercially available dressings. |
| |
Keywords: | biocompatibility burn wounds exudate hydrogels wound dressings |
|
|