首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical modeling of respiratory viral infection and applications to SARS-CoV-2 progression
Authors:Latifa Ait Mahiout  Nikolai Bessonov  Bogdan Kazmierczak  Vitaly Volpert
Affiliation:1. Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques, Ecole Normale Supérieure, Algiers, Algeria;2. Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, Russia;3. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland;4. Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France
Abstract:Viral infection in cell culture and tissue is modeled with delay reaction-diffusion equations. It is shown that progression of viral infection can be characterized by the viral replication number, time-dependent viral load, and the speed of infection spreading. These three characteristics are determined through the original model parameters including the rates of cell infection and of virus production in the infected cells. The clinical manifestations of viral infection, depending on tissue damage, correlate with the speed of infection spreading, while the infectivity of a respiratory infection depends on the viral load in the upper respiratory tract. Parameter determination from the experiments on Delta and Omicron variants allows the estimation of the infection spreading speed and viral load. Different variants of the SARS-CoV-2 infection are compared confirming that Omicron is more infectious and has less severe symptoms than Delta variant. Within the same variant, spreading speed (symptoms) correlates with viral load allowing prognosis of disease progression.
Keywords:reaction-diffusion equations  spreading speed  SARS-CoV-2 variants  viral infection  viral load
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号