首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on influence of microscale effects on liquid flow characteristic in microtubes
Authors:Zhigang Liu  Chengwu Zhang  Xiaobao Zhao
Affiliation:(1) Energy Research Institute of Shandong Academy of Sciences, Jinan, 250014, China;(2) College of Power Engineering, Nanjing Normal University, Nanjing, 210042, China
Abstract:Using deioned water as a working fluid, the influence of the microscale effects on liquid flow resistance in microtubes with inner diameters of 19.6 and 44.2 μm, respectively, is experimentally studied. The temperature rise resulted from the microscale effects, such as viscous dissipation, electric double layer, wall rough on the wall surface, etc., is obtained by an IR camera with a special magnified lens adopting micro-area thermal image technology and the corresponding pressure drop and the flux are also measured, so the relationship among friction factor, temperature rise and Reynolds number is obtained. Investigation shows that experimental data are almost equal to those of Hagen–Poiseuille when Reynolds number is low. With the increase of Reynolds number, the values of the friction factor depart from that of classical theory due to the microscale effects. Moreover, the values of the experimental friction factor considering various microscale effects is the maximal 10–15% deviation from that of friction factor without considering various microscale effects with further increase of Reynolds number.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号