首页 | 本学科首页   官方微博 | 高级检索  
     


Adjoint and defect error bounding and correction for functional estimates
Authors:Niles A. Pierce  Michael B. Giles  
Affiliation:a Applied & Computational Mathematics, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA;b Computing Laboratory, Oxford University, UK
Abstract:We present two error estimation approaches for bounding or correcting the error in functional estimates such as lift or drag. Adjoint methods quantify the error in a particular output functional that results from residual errors in approximating the solution to the partial differential equation. Defect methods can be used to bound or reduce the error in the entire solution, with corresponding improvements to functional estimates. Both approaches rely on smooth solution reconstructions and may be used separately or in combination to obtain highly accurate solutions with asymptotically sharp error bounds. The adjoint theory is presented for both smooth and shocked problems; numerical experiments confirm fourth-order error estimates for a pressure integral of shocked quasi-1D Euler flow. By employing defect and adjoint methods together and accounting for errors in approximating the geometry, it is possible to obtain functional estimates that exceed the order of accuracy of the discretization process and the reconstruction approach. Superconvergent drag estimates are obtained for subsonic Euler flow over a lifting airfoil.
Keywords:Adjoint   Defect   Error bounding   Error correction   Functionals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号