首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111)
Authors:Guo Song  Kandel S Alex
Institution:Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Abstract:Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-Cl(dppe)2Ru(C Triple Bond C)6Ru(dppe)2Cl] abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77 K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77 K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7 A intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77 K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号