Synthesis of carbazole-based dendrimer: host material for highly efficient solution-processed blue organic electrophosphorescent diodes |
| |
Authors: | Wei Jiang Jinan Tang Wen Yang Xinxin Ban Bin Huang Yunqian Dai Yueming Sun Lian Duan Juan Qiao Liduo Wang Yong Qiu |
| |
Affiliation: | 1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China;2. Department of Chemistry, Tsinghua University, Beijing 100084, PR China |
| |
Abstract: | This paper reports the synthesis and physical properties of two novel carbazole-based dendritic host materials Cz-CCP and Cz-mCP for solution-processed blue phosphorescent organic light-emitting devices (PhOLEDs). These dendritic hosts exhibit high triplet energy (≥2.85 eV), excellent film-forming ability (with low root-mean-square (rms) values less than 0.2 nm), high glass-transition temperatures in the range of 242–248 °C, and the appropriate HOMO energy levels (?5.33–?5.35 eV) facilitating the transfer of holes from Poly(3,4-ethylenedioxythiophene):Poly(styrene-4-sulfonate) (PEDOT:PSS) to the emitting layer. The single-layer device using Cz-CCP and Cz-mCP as the host for the phosphorescence emitter iridium(III) bis(4,6-difluorophenylpyridinato)-picolinate (FIrpic) showed the maximum luminance efficiencies of 9.6 and 10.8 cd A?1, respectively. By introducing a thin 1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene (TPBI) electron-transporting and exciton-confining layer, the maximum efficiency of the solution-processed double-layer device based on Cz-CCP and Cz-mCP can be further improved to 20.5 and 22.7 cd A?1, and maximum external quantum efficiencies as high as 10.2% and 11.5%, respectively. These results demonstrated that the newly synthesized, carbazole-based dendritic host materials are advantageous for fabrication of highly efficient blue PhOLEDs. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|