首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two ultrasonic applications for the synthesis of nanostructured copper oxide (II)
Institution:Department of Physics, Faculty of Basic Science, Shahed University, P.O. Box 18155/159, Tehran, Iran
Abstract:In this paper, we present two aspects of the ultrasonic for the synthesis of CuO (II) nanostructures. In the first ultrasound application, we made a copper tip for an ultrasonic probe transducer and used it for electrolysis and ultrasound irradiation processes. This method is named direct sonoelectrochemistry and compares with conventional electrochemistry. CuO (II) nanostructures are obtained after sintering for both direct sonoelectrochemistry method and conventional electrochemistry method. In the second application of ultrasound, the copper nanostructures were generated by the ultrasound ablation method, and then, the heating process was performed for oxidation. The formation of the copper and CuO (II) nanostructures is confirmed by the powder X-ray diffraction (XRD), the field emission electron microscopy (FESEM), and transmission electron microscopy (TEM). The results show that the direct sonoelectrochemistry method generates CuO (II) nanostructures 4.2 times more than conventional electrochemistry. The crystallite size in the electrochemistry methods and direct sonoelectrochemistry is 28.44 nm and 26.60 nm, respectively. The direct sonoelectrochemistry way is a very flexible method and parameters in electrochemical, ultrasound, and the relationship between them can play an important role in the process of synthesis of nanostructures. The crystallite size in the ultrasound ablation method is 21.13 nm and 25.23 nm for the copper and CuO (II) nanostructures. The most important advantages of this method are green, fast, and high purity of the produced nanostructures.
Keywords:Direct sonoelectrochemistry  Ultrasound ablation  Copper nanostructures  Copper oxide (II) nanostructures  FESEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号