Application of (super)cavitation for the recycling of process waters in paper producing industry |
| |
Affiliation: | 1. Institute for the Protection of Cultural Heritage of Slovenia, Slovenia;2. Pulp and Paper Institute of Ljubljana, Slovenia;3. Faculty of Mechanical Engineering, University of Ljubljana, Slovenia |
| |
Abstract: | In paper production industry, microbial contaminations of process waters are common and can cause damage to paper products and equipment as well as the occurrence of pathogens in the end products. Chlorine omission has led to the usage of costly reagents and products of lower mechanical quality. In this study, we have tested a rotation generator equipped with two sets of rotor and stator assemblies to generate developed cavitation (unsteady cloud shedding with pressure pulsations) or supercavitation (a steady cavity in chocked cavitation conditions) for the destruction of a persistent bacteria Bacillus subtilis. Our results showed that only supercavitation was effective and was further employed for the treatment of waters isolated from an enclosed water recycle system in a paper producing plant. The water quality was monitored and assessed according to the chemical (COD, redox potential and dissolved oxygen), physical (settleable solids, insolubles and colour intensity) and biological methods (yeasts, aerobic and anaerobic bacteria, bacterial spores and moulds). After one hour of treatment, a strong 4 logs reduction was achieved for the anaerobic sulphate reducing bacteria and for the yeasts; a 3 logs reduction for the aerobic bacteria; and a 1.3 logs reduction for the heat resistant bacterial spores. A 22% reduction in COD and an increase in the redox potential (37%) were observed. Sediments were reduced by 50% and the insoluble particles by 67%. For bacterial destruction in real industrial process waters, the rotation generator of supercavitation spent 4 times less electrical energy in comparison to the previously published cavitation treatments inside the Venturi constriction design. |
| |
Keywords: | Rotational cavitation generator Hydrodynamic cavitation Paper mill industry Anaerobic sulphate reducing bacteria COD Redox potential |
本文献已被 ScienceDirect 等数据库收录! |
|