首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Liquid jet directionality and droplet behavior during emulsification of two liquids due to acoustic cavitation
Institution:Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan
Abstract:The present study numerically investigates liquid-jet characteristics of acoustic cavitation during emulsification in water/gallium/air and water/silicone oil/air systems. It is found that a high-speed liquid jet is generated when acoustic cavitation occurs near a minute droplet of one liquid in another. The velocity of liquid jet significantly depends on the ultrasonic pressure monotonically increasing as the pressure amplitude increases. Also, the initial distance between cavitation bubble and liquid droplet affects the jet velocity significantly. The results revealed that the velocity takes maximum values when the initial distance between the droplet and cavitation bubble is moderate. Surprisingly, the liquid jet direction was found to depend on the droplet properties. Specifically, the direction of liquid jet is toward the droplet in the case of water/gallium/air system, and vice versa the jet is directed from the droplet in the case of water/silicone oil/air system. The jet directionality can be explained by location of the high-pressure spot generated during the bubble contraction.
Keywords:Acoustic cavitation  Three-Phases Volume of Fluid (TP-VOF) method  Emulsification  Non-linear oscillation  OpenFOAM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号