首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming for the extraction of psoralen and isopsoralen from Psoralea corylifolia seeds
Institution:College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
Abstract:Recently, integrated and sustainable methods for extracting active substances from plant materials using green solvents, i.e., ionic liquids, have gained increasing attention. Ionic liquids show superiority over conventional organic solvents; however, they also exhibit negative factors and problems, such as high viscosity, poor water intermiscibility, intensive foaming and poor affinity for fat-soluble substances. The proposed method utilizes ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming (UESILED) to improve the extraction efficiency of ionic liquids. Single-factor experiments and a Box-Behnken design (BBD) were utilized to optimize the extraction procedure. The optimal conditions were as follows: extraction solvent, C10MIM]Br; ultrasonic treatment time, 28 min; ultrasonic irradiation power, 437 W; liquid–solid ratio, 10 mL/g; particle size, 60 ~ 80 mesh; ultrasonication temperature, 313 K; and C10MIM]Br solution concentration, 0.5 mol/L. In comparison with those of other reference extraction methods, the proposed method exhibited higher yields of two furocoumarins and operational feasibility. Moreover, the mechanism of UESILED was elaborated in terms of accelerating infiltration, dissolution and defoaming. The feasible and efficient ultrasonic-enhanced ionic liquid-based extraction established in this study strongly contributes to overcoming the limitations of ionic liquid solvents. The present research indicates that this improved process will be beneficial for the extraction of other fat-soluble substances and provides promising concepts and experimental data.
Keywords:Surface-active ionic liquid  Ultrasonic-enhanced extraction and defoaming  High viscosity  Furocoumarins  Fat-soluble substances
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号