首页 | 本学科首页   官方微博 | 高级检索  
     


Excited-state nonadiabatic dynamics simulations on the heptazine and adenine in a water environment: A mini review
Authors:Naeem Ullah  Shunwei Chen  Ruiqin Zhang
Affiliation:Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
Abstract:Studying the excited-state decay process is crucial for materials research because what happens to the excited states determines how effective the materials are for many applications, such as photoluminescence and photocatalysis. The high computational cost, however, limits the use of high-accuracy theoretical approaches for analyzing research systems containing a significant number of atoms. Time-dependent density functional theory is a practical approach to investigate the photorelaxation processes in these systems, as demonstrated in the studies of the excited-state decays of heptazine-water clusters and adenine in water described in this review. Here, we highlight the importance of conical intersections in the excited-state decay processes of these systems using the aforementioned examples. In the heptazine-water and adenine-water systems, these intersections are associated with the photocatalytic water splitting reaction, caused by a barrierless reaction called water to adenine electron-driven proton transfer. We expect the result would be helpful for researching the excited-state decays of graphitic carbon nitride materials and DNA nucleotides.
Keywords:nanomaterials  nonadiabatic dynamics  photochemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号