首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms,geometric and operation parameters
Institution:1. College of Environment, Liaoning University, Shenyang 110036, PR China;2. College of Chemistry, Liaoning University, Shenyang 110036, PR China
Abstract:In this paper, a novel method, hydrodynamic cavitation (HC) combined with Fe3+-doped TiO2, for the degradation of organic pollutants in aqueous solution is reported. The venturi tubes with different geometric parameters (size, shape and half divergent angle) are designed to obtain a strong HC effect. The structure, morphology and chemical composition of prepared Fe3+-doped TiO2 as catalyst are characterized via using XRD, SEM, TEM, XPS, UV-vis DRS and PL methods. The effects of added TiO2 (heat-treated at different temperatures for different times) and Fe3+-doped TiO2 (with different mole ratios of Fe and Ti) on the HC catalytic degradation of RhB are discussed. The influences of operation parameters including inlet pressure, initial RhB concentration and operating temperature on the HC catalytic degradation of RhB are studied by Box-Behnken design (BBD) and response surface methodology (RSM). Under 3.0 bar inlet pressure for 10 mg/L initial concentration of RhB solution at 40 °C operating temperature in the presence of Fe3+-doped TiO2 with 0.05:1.00 M ratio of Fe and Ti, the best HC degradation ratio can be obtained (91.11%). Furthermore, a possible mechanism of HC degradation of organic pollutants in the presence of Fe3+-doped TiO2 is proposed. Perhaps, this study may provide a feasible method for a large-scale treatment of dye wastewater.
Keywords:Hydrodynamic cavitation  Venturi tube design  Degradation of organic dye  Box-Behnken design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号