首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum chemical rovibrational analysis of aminoborane and its isotopologues
Authors:Moritz Schneider  Guntram Rauhut
Institution:Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany
Abstract:Aminoborane, H2NBH2 and its isotopologues, H2N10BH2, D2NBD2, and D2N10BD2, have been studied by high-level ab initio methods. All calculations rely on multidimensional potential energy surfaces and dipole moment surfaces including high-order mode coupling terms, which have been obtained from electronic structure calculations at the level of explicitly correlated coupled-cluster theory, CCSD(T)-F12, or the distinguishable cluster approximation, DCSD. Subsequent vibrational structure calculations based on second-order vibrational perturbation theory, VPT2, and vibrational configuration interaction theory, VCI, were used to determine rotational constants, centrifugal distortion constants, vibrationally averaged geometrical parameters and (an)harmonic vibrational frequencies. The impact of core-correlation effects is discussed in detail. Rovibrational VCI calculations were used to simulate the gas phase spectra of these species and an in-depth analysis of the ν7 band of aminoborane is provided. Color-coding is used to reveal the identity of the individual progressions of the rovibrational transitions for this particular mode.
Keywords:aminoborane  rovibrational calculations  vibrational configuration interaction theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号