首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined quantum chemical/molecular mechanical study of hydrogen-bonded systems
Authors:V V Vasilyev  A A Bliznyuk  A A Voityuk
Abstract:A computational approach, which involves the combination of the OPLS force field and molecular orbital MNDO , AM 1, and PM 3 methods, has been developed to describe the effects of a large, molecular mechanically simulated environment on the Hamiltonian of a quantum chemical system. To test the validity of the combined quantum mechanical/molecular mechanical (QM /MM ) potential, a systematic study of the structures and energies of neutral and charged hydrogen-bonded complexes has been carried out, including comparisons with pure semiempirical calculations and available experimental and ab initio data. It is shown that, in many cases, the hybrid QM /MM potential behaves better than do related MNDO /M , AM 1, and PM 3 methods. As a case in point, the draw-back of AM 1 favoring bifurcated H-bonded structures over single ones is not presented in the combined AM 1/OPLS scheme. Possible ways of improvement of the combined QM /MM potential are discussed. © 1992 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号