首页 | 本学科首页   官方微博 | 高级检索  
     


Optical absorption and magnetotransport in quantum wires in a perpendicular magnetic field
Affiliation:Department of Physics and Astronomy, Hunter College City University of New York, 695 Park Avenue, New York, NY 10021, USA and Department of Electrical & Computer Engineering Wayne State University, Detroit, MI 48202, USA;Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poland;Department of Theoretical Physics and Astrophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovak Republic
Abstract:A periodic array of δ function potentials are used to simulate the potential barriers between quantum wires in the presence or absence of lattice site dislocation. The exact eigenenergies and eigenfunctions are found by employing a numerical diagonalization procedure. Based on these results, a self-consistent field theory is derived for the mid-infrared absorption coefficient of the system. The crossover from a cyclotron mode to two tunneling coupled modes and finally to edge and 1D lattice magnetoplasmon modes with increasing modulation strength is investigated. The magnetic field enhanced and suppressed electron tunneling, associated with the evolution to cyclotron modes at strong magnetic fields passing through the formation of tunneling coupled modes, is observed. The edge mode excitation energy oscillates as a function of the electron density. These oscillations correspond to a soft or hard potential wall for which the electron states are extended or localized, respectively. The displacement of the 1D lattice magnetoplasmon modes under strong modulation is found to be periodic and corresponds to the evolution from a complex unit cell which is composed of one narrow and one wide quantum wire to a simple unit cell containing only one quantum wire. The magnetoresistivities and the associated conductivities are also calculated for the lateral surface superlattice. At strong potential modulation there is a giant peak in the Hall conductivity and many peaks in its resistivity in the quantum regime. With strong modulation, the suppression of the transverse conductivity along with oscillations in its resistivity are obtained.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号