首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum well and quantum wire states at metal surfaces
Institution:1. Department of Chemical Physics, Fritz-Haber-Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany;2. Physik-Department E20, Technische Universität München, 85748 Garching, Germany
Abstract:Novel effects in magnetic multilayer structures, such as oscillatory magnetic coupling and "giant" magnetoresistance, have created new materials that allow for an order of magnitude higher sensitivity in the detection of magnetically-recorded data. Determination of their electronic and magnetic structures with angle-resolved photoemission and inverse photoemission reveals quantized states in the noble metal spacer layers which are connected with oscillatory magnetic coupling and have implications on magnetoresistance. These states can be understood by a simple interferometer model, including the spin-dependent interface reflectivity that polarizes them and transmits the magnetic coupling through the noble metal spacer.Current efforts are discussed, which aim towards fabricating quantum wires and lateral superlattices on metals by decorating steps at vicinal surfaces. STM work on the growth mode of such structures is presented, which uses spectroscopic contrast to distinguish different metals. Specific electronic states at decorated step edges are found with inverse photoemission.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号