首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A high-resolution infrared spectroscopic investigation of the halogen atom-HCN entrance channel complexes solvated in superfluid helium droplets
Authors:Merritt Jeremy M  Küpper Jochen  Miller Roger E
Institution:Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. merritjm@unc.edu
Abstract:Rotationally resolved infrared spectra are reported for the X-HCN (X = Cl, Br, I) binary complexes solvated in helium nanodroplets. These results are directly compared with those obtained previously for the corresponding X-HF complexes J. M. Merritt, J. Küpper and R. E. Miller, Phys. Chem. Chem. Phys., 2005, 7, 67]. For bromine and iodine atoms complexed with HCN, two linear structures are observed and assigned to the (2)Sigma(1/2) and (2)Pi(3/2) ground electronic states of the nitrogen and hydrogen bound geometries, respectively. Experiments for HCN + chlorine atoms give rise to only a single band which is attributed to the nitrogen bound isomer. That the hydrogen bound isomer is not stabilized is rationalized in terms of a lowering of the isomerization barrier by spin-orbit coupling. Theoretical calculations with and without spin-orbit coupling have also been performed and are compared with our experimental results. The possibility of stabilizing high-energy structures containing multiple radicals is discussed, motivated by preliminary spectroscopic evidence for the di-radical Br-HCCCN-Br complex. Spectra for the corresponding molecular halogen HCN-X(2) complexes are also presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号