首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Membrane characterization by solute transport and atomic force microscopy
Institution:1. Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea SA2 8PP, United Kingdom;2. Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, Doha, Qatar
Abstract:Various ultrafiltration and nanofiltration membranes were characterized by solute transport and also by atomic force microscope (AFM). The molecular weight cut-off (MWCO) of the membranes studied were found to be between 3500 and 98,000 Daltons. The mean pore size (μp) and the geometric standard deviation (σp) around mean ranged from 0.7 to 11.12 nm and 1.68 to 3.31, respectively, when calculated from the solute transport data. Mean pore sizes measured by AFM were about 3.5 times larger than calculated from the solute transport. Pore sizes measured by AFM were remarkably fitted to the log-normal probability distribution curve. Pore sizes of the membranes with low MWCO (20,000 Daltons and lower) could not be measured by AFM because of indistinct pores. In most cases, the pore density ranged from 38 to 1291 pores/μm2. In general, the pore density was higher for the membrane having lower MWCO. Surface porosity was around 0.5–1.0% as measured from the solute transport and was 9.5–12.9% as obtained from AFM images. When membranes were coated with a thin layer of sulfonated polyphenylene oxide, mean pore sizes were reduced for all the membranes. Surface roughness was also reduced on coating.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号