首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases
Authors:Ode Hirotaka  Ota Masami  Neya Saburo  Hata Masayuki  Sugiura Wataru  Hoshino Tyuji
Institution:Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan. odehir@graduate.chiba-u.ac.jp
Abstract:Inhibitors against human immunodeficiency virus type-1 (HIV-1) proteases are finely effective for anti-HIV-1 treatments. However, the therapeutic efficacy is reduced by the rapid emergence of inhibitor-resistant variants of the protease. Among patients who failed in the inhibitor nelfinavir (NFV) treatment, D30N, N88D, and L90M mutations of HIV-1 protease are often observed. Despite the serious clinical problem, it is not clear how these mutations, especially nonactive site mutations N88D and L90M, affect the affinity of NFV or why they cause the resistance to NFV. In this study, we executed molecular dynamics simulations of the NFV-bound proteases in the wild-type and D30N, N88D, D30N/N88D, and L90M mutants. Our simulations clarified the conformational change at the active site of the protease and the change of the affinity with NFV for all of these mutations, even though the 88th and 90th residues are not located in the NFV-bound cavity and not able to directly interact with NFV. D30N mutation causes the disappearance of the hydrogen bond between the m-phenol group of NFV and the 30th residue. N88D mutation alters the active site conformation slightly and induces a favorable hydrophobic contact. L90M mutation dramatically changes the conformation at the flap region and leads to an unfavorable distortion of the binding pocket of the protease, although 90M is largely far apart from the flap region. Furthermore, the changes of binding energies of the mutants from the wild-type protease are shown to be correlated with the mutant resistivity previously reported by the phenotypic experiments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号