首页 | 本学科首页   官方微博 | 高级检索  
     


Global volume conservation in unsteady free surface flows with energy absorbing far‐end boundaries
Authors:Ender Demirel  Ismail Aydin
Abstract:A wave absorption filter for the far‐end boundary of semi‐infinite large reservoirs is developed for numerical simulation of unsteady free surface flows. Mathematical model is based on finite volume solution of the Navier–Stokes equations and depth‐integrated continuity equation to track the free surface. The Sommerfeld boundary condition is applied at the far‐end of the truncated computational domain. A dissipation zone is formed by applying artificial pressure on water surface to dissipate the kinetic energy of the outgoing waves. The computational scheme is tested to verify the conservation of total fluid volume in the domain for long simulation durations. Combination of the Sommerfeld boundary and dissipation zone can effectively minimize reflections and prevent cumulative changes in total fluid volume in the domain. Solitary wave, nonlinear periodic waves and irregular waves are simulated to illustrate the numerical developments. Earthquake excited surface waves and nonlinear hydrodynamic pressures in a dam–reservoir are computed. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:free surface flow  unsteady flow  far‐end boundary  non‐reflecting boundary  energy absorbing boundary  dam–  reservoir  finite volume method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号