首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-assembly of germanium islands under pulsed irradiation by a low-energy ion beam during heteroepitaxy of Ge/Si(100) structures
Authors:J V Smagina  V A Zinovyev  A V Nenashev  A V Dvurechenski?  V A Armbrister  S A Teys
Institution:(1) Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 13, Novosibirsk, 630090, Russia
Abstract:The effect of pulsed irradiation by a low-energy (50–250 eV) ion beam with a pulse duration of 0.5 s on the nucleation and growth of three-dimensional germanium islands during molecular-beam heteroepitaxy of Ge/Si(100) structures is investigated experimentally. It is revealed that, at specific values of the integrated ion flux (less than 1012 cm?2), pulsed ion irradiation leads to an increase in the density of islands and a decrease in their mean size and size dispersion as compared to those obtained in the case of heteroepitaxy without ion irradiation. The observed phenomena are explained in the framework of the proposed model based on the concept of a change in the diffusion mobility of adatoms due to the instantaneous generation of interstitial atoms and vacancies under pulsed ion irradiation. It is assumed that the vacancies and interstitial atoms give rise to an additional surface strain responsible for the change in the binding energy of the adatoms. Under certain conditions, these processes bring about the formation of centers of preferential nucleation of three-dimensional islands at the places where the ions impinge on the surface. The model accounts for the possibility of annihilating vacancies and interstitial atoms on the surface of the growing layer. It is demonstrated that the results obtained from the Monte Carlo calculations based on the proposed model are in good agreement with the experimental data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号