首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   9篇
化学   76篇
晶体学   2篇
综合类   1篇
物理学   8篇
综合类   13篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
 We evaluated the hydrolysis of egg yolk phosphatidylcholine (PC) by phospholipase D from Streptomyces chromofuscus (PLD) in small unilamellar vesicles (SUV) in presence of 50 μM Ca2+. After initial choline production (hydrolysis of 1.5% of the PC at the outer leaflets of the vesicle bilayers), the hydrolysis was reduced to 5% of the initial velocity. The kinetic behavior in SUV of premixed PC and a low percentage of the hydrolysis product, phosphatidic acid (PA), was similar to that of PC SUV. The reduced velocity disappeared when the membrane structure was disintegrated by means of a nonionic surfactant. In the retardation phase, the partially hydrolyzed vesicles (postsubstrates) had much higher affinity for PLD than fresh PC SUV. These results indicated that small clusters of the product, PA, at the vesicle surface were responsible for the reduced velocity of hydrolysis. The initial velocity increased in a biphasic manner with the substrate concentration. At a PC concentration range up to 4 mM, the experimental data fit Michaelis–Menten kinetics. At concentrations above 6 mM, the velocity again markedly increased. Negatively charged mixed vesicles of PC and PA did not have such kinetics. Furthermore, adding PC SUV to the postsubstrates, where the fraction of free PLD was less than 0.05, induced steep choline production. These results showed that PLD bound to vesicles had higher activity than free PLD. We speculated that PLD bound to vesicles collided with and was directly transferred to PC SUV when the fraction of free PLD in aqueous medium was very small. Received: 5 November 1996 Accepted: 26 February 1997  相似文献   
2.
本文用浊度滴定(UV-Vis)、透射电镜(TEM)和激光光散射(QELS)等方法对Al3+离子与卵磷脂(EYPC)囊泡之间的相互作用及其这种相互作用对溶液中磷脂微结构的影响进行了研究。结果表明,一定量的Al3+离子使EYPC多层囊泡转变为线团状聚集体;Al3+与牛磺胆酸钠(TC)的协同作用可以破坏EYPC的多层囊泡结构,促进相转变,形成混合胶束。  相似文献   
3.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   
4.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   
5.
用卵磷脂、胆固醇和蛋白质所形成的囊泡模拟细胞膜,利用Langmuir膜天平、Zeta电势研究卵磷脂、胆固醇和蛋白质分子之间的相互作用,以及通过停留法和TEM等方法从Gemini(双子)表面活性剂对细胞膜结构破坏方面来探讨不同组分对囊泡的稳定性的影响.实验结果表明,囊泡中的蛋白质、胆固醇和卵磷脂分子之间是相互吸引的.相对于卵磷脂囊泡,混合体系囊泡更加稳定.表面活性剂是通过静电吸引力和疏水效应嵌入囊泡的双分子层中,导致囊泡被破坏.通过动力学实验得到Gemini表面活性剂对囊泡破坏过程的活化能,进一步证明加入蛋白质、胆固醇能够使卵磷脂囊泡更加稳定.  相似文献   
6.
The molecular species of phosphatidylcholine from freshwater sources (Macrobranchium nipponense and Macrobranchium rosenbergii) and marine sources (Euphausia superba and Penaeus chinesis) were characterized by high-resolution mass spectrometry. The tandem secondary mass spectrometry (MS/MS) fragmentation allowed for the identification of fatty acyl residues of phosphatidylcholine molecular species. (16:0–18:1)Phosphatidylcholine was the main phosphatidylcholine molecular species determined in all shrimp samples, especially in E. superba. Macrobranchium rosenbergii phosphatidylcholine was particularly rich in (16:0–20:5)phosphatidylcholine and (16:0–22:6)phosphatidylcholine. The proportion of the two molecular species was next to the phosphatidylcholine of E. superba. Therefore, M. rosenbergii appears to be a potential freshwater source for the supplementation of polyunsaturated fatty acids, particularly eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6). This approach may be used as an efficient method for the identification of natural phosphatidylcholine sources from the broad range of plant, animal, and marine origins.  相似文献   
7.
Fluorescence emission spectra, FTIR spectra, zeta potential measurements, and ab initio quantum calculation are used to study the interaction between puerarin and membranes composed of egg phosphatidylcholine (PC) liposome. The hydrophobic interactions cause the puerarin molecule to partition into lipid bilayers with its B-ring, and favor the displacement of acid-base equilibrium of puerarin towards the base form. Due to the hydrogen bond formation between the puerarin hydroxyl groups and polar groups of PC molecules on the water/membrane interface, puerarin can easily intercalate into the organized structure of phospholipids and modulate the membrane function. Our results reveal that the liposome membrane integrity is significantly higher compared with that of empty liposome.  相似文献   
8.
Organometallic compounds are widely spread in the human environment sometimes, causing a substantial health risk. Their amphiphilic character enables them to intercalate and penetrate cell membranes, potentially affecting various vital cell functions. Compound adsorption onto the membrane depends on the compound properties, as well as on the membrane composition and state. When adsorbing onto the lipidic surface, phenyltins localize at areas where lipid bilayer organization is compatible with compound spatial requirements. The lipid bilayer is a dynamic and laterally nonuniform structure with complex local and global architecture correlated with a variety of cell functions. The selective binding of a toxic compound to selected membrane areas may, therefore, interfere with some types of cellular process. We present experimental results concerning phenyltin adsorption onto the lipid bilayer surface measured with the fluorescent probe fluorescein‐PE. Model lipid bilayers were formed from lipid mixtures mimicking various plasma membrane regions. The adsorption of Ph3SnCl and P2SnCl2 onto the phosphatidylcholine–cholesterol bilayer was qualitatively different from sphingomyelin–cholesterol. The results presented indicate that phenyltins are likely to accumulate in areas containing phosphatidylcholine, outside of lipid rafts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
Surface pressure (π)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-α-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from π-A curves applying the additivity rule by calculating the excess free energy of mixture (ΔG(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes.  相似文献   
10.
Cholesterol is an important constituent of eukaryotic cell membranes, whose interaction with phospholipids leads to a broad range of biological roles, such as: maintenance of proper fluidity, formation of raft domains, reduction of passive permeability of various chemical species through the bilayer (e.g., glucose, glycerol, K+, Na+ and Cl ions), and increased mechanical strength of the membrane. In this work we studied an interesting paradigm, as to whether cholesterol-containing phosphatidylcholine biomembranes influence the kinetics and transport features of alamethicin oligomers embedded into it. We demonstrate that moderate relative amounts of cholesterol increase the electrical conductance of various sub-conductance states of the alamethicin oligomer, caused probably by a non-monotonic change in the lumped dipole moment of the biomembrane. Our data suggest that biomembrane stiffness caused by cholesterol, visibly modifies the association-dissociation rates of alamethicin oligomerization in the biomembrane. Moreover, increasing concentrations of cholesterol seem to lead to more stable intermediate alamethicin oligomers. We show that in the presence of cholesterol, as the diameter of the alamethicin oligomer increases, so does the time of another monomer to get picked up. These results brings into focus the interesting issue of how oligomerization of proteins affects their interaction affinities for membrane-based lipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号