首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24433篇
  免费   3508篇
  国内免费   3297篇
化学   13806篇
晶体学   194篇
力学   776篇
综合类   104篇
数学   348篇
物理学   7714篇
综合类   8296篇
  2024年   78篇
  2023年   296篇
  2022年   708篇
  2021年   758篇
  2020年   974篇
  2019年   723篇
  2018年   736篇
  2017年   926篇
  2016年   1114篇
  2015年   1146篇
  2014年   1483篇
  2013年   1982篇
  2012年   1658篇
  2011年   1722篇
  2010年   1326篇
  2009年   1511篇
  2008年   1554篇
  2007年   1596篇
  2006年   1443篇
  2005年   1354篇
  2004年   1298篇
  2003年   1126篇
  2002年   885篇
  2001年   774篇
  2000年   690篇
  1999年   558篇
  1998年   478篇
  1997年   421篇
  1996年   353篇
  1995年   311篇
  1994年   253篇
  1993年   211篇
  1992年   153篇
  1991年   145篇
  1990年   113篇
  1989年   96篇
  1988年   79篇
  1987年   66篇
  1986年   42篇
  1985年   19篇
  1984年   17篇
  1983年   13篇
  1982年   8篇
  1981年   12篇
  1980年   6篇
  1979年   8篇
  1976年   2篇
  1975年   2篇
  1972年   4篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the transverse relaxation time (T2) of activated carbon (AC) in different relative environment humidity was detected firstly by low-field nuclear magnetic resonance (LFNMR). The pore size (diameter) of AC distributions was calculated by the relationship between T2 and surface relaxation rate (ρ), where ρ was obtained by the detection of nine porous materials with known pore size. The results showed that the pore size distributions of AC calculated by ρ < 0.19 nm/ms were in good agreement with that obtained by nitrogen adsorption method and proved that LFNMR as a new detection method was feasible for characterizing AC pore size distribution.  相似文献   
2.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
3.
A single bubble absorption column was used to examine the effect of hydrodynamic on carbon dioxide (CO2) and hydrogen sulfide (H2S) absorption in pure water and water-based nanofluids dispersed with neat, and OH and NH2 functionalized multiwall carbon nanotubes (MWCNTs). Sodium dodecyl sulfate (SDS) was used as a surfactant and stabilizer. The maximum absorption of CO2 and H2S were found to be 0.0038 mmol/m2·s and 0.056 mmol/m2·s using NH2-MWCNTs /nanofluid with 0.5 wt% content, respectively. The diffusion coefficients of gases into the nanofluids were computed by using an equation attained based on Dankwert’s theory. A last, an empirical correlation was proposed to determine the Sherwood number for the absorption of the aforementioned gases into the nanofluids.  相似文献   
4.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
5.
Ioan Baldea 《中国物理 B》2022,31(12):123101-123101
Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.  相似文献   
6.
采用自行设计的两种不同结构的熔融浸渍模具制备了连续玻璃纤维增强聚丙烯预浸带,测试了模具结构对预浸带的孔隙率、纤维断裂率、界面形貌、纤维分散均匀度和拉伸强度的影响,建立了纤维浸渍模型和纤维断裂模型,并通过理论模型对预浸带的孔隙率和断裂率进行理论预测。结果表明,本文建立的数学模型能够有效预测预浸带的浸渍程度和纤维断裂率,可用于浸渍模具结构的优化设计;在本文范围内,与波浪形模具相比,斜齿形模具的多楔形区结构可以有效地降低预浸带孔隙率和提升纤维分散程度;波浪形模具的流道圆角半径较大,楔形区个数较少,与斜齿形模具相比,可有效降低纤维断裂率并提升拉伸性能。  相似文献   
7.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
8.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
9.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号