首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4830篇
  免费   978篇
  国内免费   1297篇
化学   3092篇
晶体学   328篇
力学   67篇
综合类   36篇
数学   8篇
物理学   2691篇
综合类   883篇
  2024年   13篇
  2023年   63篇
  2022年   144篇
  2021年   160篇
  2020年   213篇
  2019年   176篇
  2018年   182篇
  2017年   230篇
  2016年   269篇
  2015年   291篇
  2014年   373篇
  2013年   463篇
  2012年   497篇
  2011年   623篇
  2010年   499篇
  2009年   509篇
  2008年   443篇
  2007年   472篇
  2006年   398篇
  2005年   281篇
  2004年   244篇
  2003年   160篇
  2002年   109篇
  2001年   69篇
  2000年   45篇
  1999年   41篇
  1998年   21篇
  1997年   23篇
  1996年   17篇
  1995年   7篇
  1994年   16篇
  1993年   10篇
  1992年   12篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有7105条查询结果,搜索用时 15 毫秒
1.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
2.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
4.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
5.
CdSe和ZnO量子点的拉曼光谱研究   总被引:2,自引:0,他引:2  
本文介绍了用拉曼光谱研究CdSe和ZnO两种Ⅱ Ⅳ族量子点材料的结果,对拉曼峰进行了指认。观察到的光学声子峰位的移动被认为是由量子限制效应引起。  相似文献   
6.
Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood. Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaClw/v. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy. Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1–6.7 ± 3.4 kdynes/cm2, P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28–182 ± 23 106/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio-nano interface enables rational ME design for in vivo applications.  相似文献   
7.
蓝宝石R面上ZnO薄膜的NH3掺杂研究   总被引:3,自引:1,他引:2  
以NH3为掺杂源,利用金属有机化学气相沉积(MOCVD)系统在蓝宝石R面上生长出掺氮ZnO薄膜。通过XRD,SEM测量优化了其生长参数,在610℃和在80sccm的NH3流量下生长出了〈1120〉单一取向的ZnO薄膜。经Hall电阻率测量,得知该薄膜呈现弱p型或高电阻率,并对其光电子能谱进行了研究。  相似文献   
8.
The composite comprised of zinc oxide quantum dots and poly(amic acid) (PAAc) was prepared and studied by X-rays diffraction, X-ray photoelectron spectroscopy, light scattering, UV absorbance and UV fluorescence. The UV absorbance of the ZnO/PAAc composite was found to be much larger than that of its components taken separately. The fluorescence of the ZnO/PAAc composite was found to be shifted to longer wavelengthes in comparison with pure ZnO. The presence of the dopant dodecylbenzenesulfonic acid was found to affect the observed fluorescence.  相似文献   
9.
Synthesis and Raman analysis of 1D-ZnO nanostructure via vapor phase growth   总被引:1,自引:0,他引:1  
1D-nanostructural zinc oxide (ZnO) with different shapes have been synthesized on p-type Si(1 0 0) and glass substrates via vapor phase growth by heating pure zinc powder at temperatures between 480 and 570 °C. The different ZnO nanostructures depend on the substrates and the growth temperatures. Scanning electron microscopy and X-ray diffraction revealed that a well-aligned nanowires array, which are vertical to the substrate of Si(1 0 0) with 18 sides on their heads, but six sides on their stems, has been formed at 480 °C. Raman study on the ZnO nanostructures shows that the coupling strength between electron and phonon determined by the ratio of the second- to the first-order Raman scattering cross-sections declines with decreasing diameter of the nanowires. However, a little changes of the coupling strength in terms of the width of the nanobelts have been observed.  相似文献   
10.
Formation of p-type ZnO film on InP substrate by phosphor doping   总被引:3,自引:0,他引:3  
ZnO thin film was initially deposited on InP substrate by radio frequency (rf) magnetron sputtering and the diffusion process was performed using the closed ampoule technique where Zn3P2 was used as the dopant source. To verify the junction formation of ZnO thin films, the electrical properties were measured, and the effects of Zn3P2 diffusion on ZnO thin films were investigated. It is observed that the electrical property of the film is changed from n-type to p-type by dopant diffusion effect. Based on the results, it is confirmed that ZnO thin films can be a potential candidate for ultraviolet (UV) optical devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号