首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   20篇
  国内免费   143篇
化学   778篇
晶体学   4篇
力学   2篇
数学   2篇
物理学   93篇
综合类   68篇
  2024年   2篇
  2023年   19篇
  2022年   16篇
  2021年   12篇
  2020年   24篇
  2019年   17篇
  2018年   16篇
  2017年   25篇
  2016年   18篇
  2015年   21篇
  2014年   48篇
  2013年   63篇
  2012年   55篇
  2011年   45篇
  2010年   44篇
  2009年   58篇
  2008年   52篇
  2007年   51篇
  2006年   52篇
  2005年   36篇
  2004年   33篇
  2003年   24篇
  2002年   14篇
  2001年   13篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   18篇
  1996年   15篇
  1995年   13篇
  1994年   12篇
  1993年   10篇
  1992年   12篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有947条查询结果,搜索用时 0 毫秒
1.
Tadashi Ema  Hideo Yagasaki 《Tetrahedron》2006,62(26):6143-6149
The gene encoding a versatile biocatalyst that shows high enantioselectivity for a variety of ketones, SCR (Saccharomyces cerevisiae carbonyl reductase), has been identified, cloned, and expressed in Escherichia coli. Two types of expression systems with high NADPH-regenerating capacities have been constructed. One is the tandem system, where the genes encoding SCR and GDH (glucose dehydrogenase) are located in the same plasmid, and the other is the two-plasmid system, where each of the SCR and GDH genes is located in separate plasmids that can coexist in one E. coli cell. Asymmetric reduction of ketones with the recombinant E. coli cells gave synthetically useful 20 alcohols, 11 of which were enantiomerically pure. The productivity of one of these products was as high as 41 g/L.  相似文献   
2.
Glucose, maltose, sucrose, lactose, ethanol and urea concentrations were monitored simultaneously during the cultivation of Escherichia coli and Saccharomyces cerevisiae by means of enzyme field effect transistors (EnFETs) applying glucose dehydrogenase (GDH), maltase (MAL)/GDH, invertase (INV)/GDH, β-galactosidase (β-GAL)/galactosedehydrogenase (GALDH), alcoholdehydrogenase (ADH)/aldehydedehydrogenase (ALDH), and urease. These enzymes were (co)immobilized on the pH sensitive gates of an eight-FET array. The FET array was integrated in a commercial FIA system.  相似文献   
3.
微波常压法合成水杨酸酯   总被引:15,自引:0,他引:15  
范平  葛春华 《合成化学》1998,6(4):342-344
在浓硫酸催化下,采用微波常压法由水杨酸分别与正丁醇、异丁醇、正戊醇和异戊醇反应合成相应的水杨酸酯。结果表明:当水杨酸:醇:H2SO4=1:5.5:0.3(摩尔比)时,采用560W微波辐射22min,水杨酸酯的产率可达88.7% ̄96.4%,反应速度至少是常规反应的14倍。  相似文献   
4.
在聚乙烯醇存在下,用罗丹明B-Mo(V)-SCN~-荧光熄灭法测Mo,能消除过量的SCN-对罗丹明B的熄灭作用。加入聚乙烯醇后体系的荧光熄灭倍数比未加入时大14倍。此法灵敏度高、稳定性好、操作简便,检测下限0.12ng/ml Mo.可用于测水和头发中的钼。  相似文献   
5.
Summary. Esterifications of acetic acid with some linear, secondary, tertiary, and benzylic alcohols mediated by catalytic amounts of Keggin, Wells–Dawson, and Preyssler type heteropolyacids were carried out under reflux at mild reaction conditions with good to excellent yields. Among the examined catalysts, H3PW12O40 and H14NaP5W30O110 revealed better results than other heteropolyacids. This work was performed with the aim of simplifying the esterification process by omitting any solvents and mineral acid catalysts. Easy work-up, low cost, and acidic waste reduction, which are all important features from the environmental and economical points of view, are distinct aspects of this protocol. Heteropolyacid catalysts could be separated after a simple work-up and reused for several times.  相似文献   
6.
Solutions of 1-hexanol and 1,2-hexanediol in heptane have been investigated tigated by means of dielectric time domain spectroscopy (TDS). The permittivity spectrum of 1-hexanol in heptane is characterized by a model function containing a sum of three elementary Debye dispersions, while 1,2-hexanediol in heptane is best described by a Cole-Davidson model function. It is shown that dilute solutions of 1-hexanol in heptane have a completely different behavior to that of 1,2-hexanediol. For the diol, the relaxation time levels off at a high value indicating an existence of higher hydrogen bonded complexes. It is possible to quantify the relative amount of monomeric 1-alcohol molecules from the dielectric spectrum. The monomerization rate for 1-hexanol upon dilution with heptane is initially low, but increases rapidly for mole fractions of heptane exceeding 0.4.  相似文献   
7.
A facile one-step method has been developed for the synthesis of N-protected α-amino aldehyde acetals in moderate to good yields by three-component reaction of fluoroalkanesulfonyl azides, vinyl ethers and alcohol at 0 °C within 10 min. This practical synthetic method provides a convenient and expeditious access to N-per(poly)fluoroalkanesulfonyl α-amino aldehyde acetals.  相似文献   
8.
A facile and efficient method for one-pot conversion of alcohols into azides using N-(p-toluenesulfonyl)imidazole (TsIm) is described. In this method, alcohols are refluxed with a mixture of NaN3, TsIm and triethylamine in the presence of catalytic amounts of tetra-n-butylammonium iodide (TBAI) in DMF affording the corresponding alkyl azides in good yields. This methodology is highly efficient for various structurally diverse alcohols with selectivity for ROH: 1° > 2° > 3°.  相似文献   
9.
季铵盐Gemini表面活性剂C12-s-C12·2Br(s=2,3,4,6)与丙醇、丁醇、戊醇、己醇混合水溶液的In(cmc)随温度升高而逐渐增大.计算所得热力学数据表明,C12-s-C12·2Br与醇混合胶团化过程服从熵驱动机理,也出现了焓/熵补偿现象.随着温度上升,熵驱动力增大,在指定温度时,醇分子烷烃链上碳原子数n增大使△Gm0值减小,胶团结构更加稳定;而增加s使值增大,胶团稳定性下降.  相似文献   
10.
Two alcohol resistant strains of Saccharomyces cerevisiae species were isolated from a Greek vineyard plantation. The strain AXAZ-1 gave a concentration of 17.6% v/v alcohol and AXAZ-2 16.5%, when musts from raisin and sultana grapes, respectively, were employed in alcoholic fermentations. They were found to be more alcohol tolerant and fermentative in the fermentation of molasse than the traditional baker's yeast. Specifically, using an initial [symbol: see text] Be density of 16 [symbol: see text] Be at the repeated batch fermentation process, in the first as well as fourth batch, the better AXAZ-1 gave final [symbol: see text] Be densities of 6.0 and 10.5 respectively, and the baker's yeast 11.6 and 14.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号