首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   35篇
  国内免费   70篇
化学   42篇
晶体学   1篇
力学   194篇
综合类   1篇
数学   31篇
物理学   206篇
综合类   219篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   27篇
  2016年   52篇
  2015年   31篇
  2014年   33篇
  2013年   44篇
  2012年   32篇
  2011年   52篇
  2010年   29篇
  2009年   48篇
  2008年   29篇
  2007年   53篇
  2006年   59篇
  2005年   43篇
  2004年   49篇
  2003年   30篇
  2002年   20篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
排序方式: 共有694条查询结果,搜索用时 210 毫秒
1.
The method described in this paper allows an investigator to determine the intrinsic stress of a polymer layer in a way that does not result in damage to devices or test structures. The method requires that a small area of the polymer be released from the substrate to form a diaphragm. The diaphragm is stimulated with acoustic white noise and the diaphragm movement is monitored with a laser vibrometer. The first few resonance frequencies of the diaphragm are obtained using a laser vibrometer and then those frequencies are used to calculate the membrane intrinsic bi-axial tension.  相似文献   
2.
反射式微光机电系统(MOEMS)的研究现状与展望   总被引:3,自引:0,他引:3  
尤政  王子旸  任大海 《光学技术》2004,30(2):189-192
反射式微光机电系统是微光机电系统中的重要组成部分,近年来得到了较快的发展。介绍了反射式微光机电系统(MOEMS)的研究现状和最新进展。根据反射式微光机电系统的分类,列举了一些具有代表性的反射式MOEMS器件。简要介绍了反射式MOEMS的加工工艺;阐述了反射式MOEMS的应用领域;展望了发展前景。  相似文献   
3.
A focused ion beam (FIB) Moiré method is proposed to measure the in-plane deformation of object in a micrometer scale. The FIB Moiré is generated by the interference between a prepared specimen grating and FIB raster scan lines. The principle of the FIB Moiré is described. The sensitivity and accuracy of deformation measurement are discussed in detail. Several specimen gratings with 0.14 and 0.20 μm spacing are used to generate FIB Moiré patterns. The FIB Moiré method is successfully used to measure the residual deformation in a micro-electro-mechanical system structure after removing the SiO2 sacrificial layer with a 5000 lines/mm grating. The results demonstrate the feasibility of this method.  相似文献   
4.
We studied the structural, electrical, and mechanical properties of an InAs thin film grown on GaAs (1 1 1)A substrates by molecular beam epitaxy. In contrast to conventionally used (0 0 1) surfaces, where Stranski–Krastanov growth dominates the highly mismatched heteroepitaxy, layer-by-layer growth of InAs can be established. One of the largest advantages of this unique heteroepitaxial system is that it provides a two-dimensional electron gas system in the near-surface region without the problem of electron depletion. We review the fundamental properties and applications of this unique heteroepitaxial system.  相似文献   
5.
An apparatus has been designed and implemented to measure the elastic tensile properties (Young's modulus and tensile strength) of surface micromachined polysilicon specimens. The tensile specimens are “dog-bone” shaped ending in a large “paddle” for convenient electrostatic or, in the improved apparatus, ultraviolet (UV) light curable adhesive gripping deposited with electrostatically controlled manipulation. The typical test section of the specimens is 400 μm long with 2 μm×50 μm cross section. The new device supports a nanomechanics method developed in our laboratory to acquire surface topologies of deforming specimens by means of Atomic Force Microscopy (AFM) to determine (fields of) strains via Digital Image Correlation (DIC). With this tool, high strength or non-linearly behaving materials can be tested under different environmental conditions by measuring the strains directly on the surface of the film with nanometer resolution.  相似文献   
6.
High quality factor of dynamic structures at micro and nano scale is exploited in various applications of micro electro-mechanical systems (MEMS) and nano electro-mechanical system. The quality factor of such devices can be very high in vacuum. However, when vacuum is not desirable or not possible, the tiny structures must vibrate in air or some other gas at pressure levels that may vary from atmospheric to low vacuum. The interaction of the surrounding fluid with the vibrating structure leads to dissipation, thus bringing down the quality factor. Depending on the ambient fluid pressure or the gap between the vibrating and the fixed structure, the fluid motion can range from continuum flow to molecular flow giving a wide range of dissipation. The relevant fluid flow characteristics are determined by the Knudsen number which is the ratio of the mean free path of the gas molecule to the characteristic flow length of the device. This number is very small for continuum flow and reasonably big for molecular flow. In this paper, we study the effect of fluid pressure on the quality factor by carrying out experiments on a MEMS device that consists of a double gimbaled torsional resonator. Such devices are commonly used in optical cross-connects and switches. We only vary fluid pressure to make the Knudsen number go through the entire range of continuum flow, slip flow, transition flow, and molecular flow. We experimentally determine the quality factor of the torsional resonator at different air pressures ranging from 760 Torr to 0.001 Torr. The variation of this pressure over six orders of magnitude ensures required rarefaction to range over all flow conditions. Finally, we get the variation of quality factor with pressure. The result indicates that the quality factor, Q, follows a power law, QP r , with different values of the exponent r in different flow regimes. In the second part of the paper, we propose the use of effective viscosity for considering velocity slip conditions in solving Navier–Stokes equation numerically. This concept is validated with analytical results for a simple case and then compared with the experimental results presented in this paper. The study shows that the effective viscosity concept can be used effectively even for the molecular regime if the air-gap to length ratio is sufficiently small (h 0/L<0.01). As this ratio increases, the range of validity decreases.  相似文献   
7.
A study of electrostatic spring softening for dual-axis micromirror   总被引:3,自引:0,他引:3  
Electrostatic spring softening is an important characteristic of electrostatically actuated dual-axis micromirror, since it lowers the resonant frequencies. This paper presents an approach based on approximating the electrostatic forces by the first-order Taylor's series expansion to investigate this characteristic. The dual-axis micromirror studied in this paper has three motion modes, two torsional (about x- and y-axis, respectively) and one translational (about z-axis). The stiffnesses of all these modes are softened by a DC bias voltage applied to the mirror plate. The resonant frequencies are lowered with the increment of the bias voltage. The relationship of the bias voltage and the resonant frequencies of all the motion modes is derived. The analytical results show that the resonant frequency curves are affected by the capacitor geometries, i.e. the gap between the mirror plate and the electrodes and the electrodes size. The lowering curves drop slowly when the bias voltage is small. While for large bias voltage, the lowering curves drop rapidly. The experiment results are consistent with those obtained by the analytical approach.  相似文献   
8.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006  相似文献   
9.
微机电系统(MEMS)技术是一门新兴的技术,它把信息系统的微型化、多功能化、智能化和可靠性水平提高到新的高度。近年来,对MEMS的技术发展、加工工艺及其产业化的研究已被越来越多的人所重视。介绍了MEMS的特点、特征、技术发展趋势,MEMS器件的类型及其功能,并以多层弯曲磁芯结构微执行器为例介绍了磁驱动微执行器工作原理与制作工艺过程。  相似文献   
10.
付世  丁桂甫  王艳 《上海交通大学学报》2006,40(11):1947-1950,1954
介绍了一种基于微机电系统(MEMS)技术的新型双稳态电磁微继电器的设计及其制作工艺,并对其主要性能进行了测试.利用换向脉冲电流驱动高效的“三明治”式电磁驱动结构,带动电接触刷的运动来控制外电路的通断;辅助设计的永磁稳定结构使器件在脉冲间歇能够保持稳定状态而无需额外功耗.测试结果表明,这种新型电磁微继电器具有体积小,功耗低,响应速度快,接触电阻小等优点.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号