首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   1篇
  国内免费   25篇
化学   57篇
物理学   53篇
综合类   13篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   8篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   15篇
  2011年   12篇
  2010年   13篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1988年   1篇
排序方式: 共有123条查询结果,搜索用时 10 毫秒
1.
Nanostructured lanthanum–strontium manganites were synthesized using two different co-precipitation approaches, one in bulk solution, and the other in reverse micelles of CTAB/1-hexanol/water microemulsion. In both cases, precursor cations were precipitated by using oxalic acid. The properties of the materials synthesized by using these two methods were compared in order to reveal potential advantages of the microemulsion-assisted approach. The influence of the annealing conditions on the properties of synthesized manganites was investigated by using X-ray diffraction, transmission electron microscopy, differential thermal analysis, thermogravimetric analysis and magnetic measurements.  相似文献   
2.
A single phase solid solution of Ce-Zr-O can be made by using NH4HCO3 solution as precipitating agent. The influence of preparation conditions, such as pH, Zr4+/(CO3 2-+HCO3 -) and Ce3+/Zr4+ ratio on the formation of the solid solution were investigated. The results show that a single phase Ce-Zr-O solid solution can be formed only under a narrow window of preparation conditions, indicating that some compounds are formed in the precipitating process. The compound may contain Ce3+, Zr4+, CO3 2-, HCO3-, and OH-. The solid solution so prepared can be described as Ce0.37Zr0.63O2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
In this work, we developed a perovskite structured samarium cobalt oxide nanoparticles (SmCoO3 NPs) with the aid of the co-precipitation method. The rare earth metal (Sm) and cobalt oxide combined to form a perovskite lattice structure. One-pot route synthesized SmCoO3 NPs were scrutinized successfully through various physicochemical techniques. Concerning its effective thermal stability and electrical properties, the synthesized SmCoO3 NPs have been effectively implemented in the electrochemical evaluation of promethazine hydrochloride (PHY) using cyclic voltammetry. The electrochemical detection of PHY was performed through SmCoO3 NPs-modified glassy carbon electrode (GCE) and unmodified GCE. The electron transfer kinetics, effect of scan rate, the influence of pH, electroactive surface area, selectivity, and sensitivity have been studied. The electron charge transfer rate (Rct) and electrolyte resistance (Rs) were calculated to be 105.59 (Ω) and 150 (Ω) in the ferricyanide probe, indicating great facilitation of the electron transfer between PHY and SmCoO3 NPs deposited on the electrode surface. Further, the optimized SmCoO3-modified GCE exemplifies excellent selectivity, storage stability, reproducibility, repeatability, detection limit (5 nM), sensitivity (0.594 μA μM?1 cm?2), and wide consecutive linear ranges, respectively. Besides, the proposed method has been effectively employed for the detection of PHY in the various real samples which reveals good recoveries of 95.40–99.17%.  相似文献   
4.
在传统的固相法的基础上开发了新型复合共沉淀法制备LiNi0.5Mn1.5O4材料.新型复合共沉淀法采用(NH4)2CO3和(NH4)2C2O4共同作为沉淀剂,通过控制共沉淀反应条件,得到了具有均匀球形形貌的沉淀物颗粒.再通过与饱和氢氧化锂溶液的水热反应及高温反应,最终制备出具有球形次级形貌和纯相尖晶石结构的LiNi0.5Mn1.5O4材料.电化学测试表明,制备的LiNi0.5Mn1.5O4具有优异的电化学性能,其初始容量达到了141.4mAh·g-1.在0.3C、1C和3C倍率下经过200次循环后的容量分别为136.0 mAh·g-1(96.3%)、128.6 mAh·g-1(94.4%)和113.9 mAh·g-1(91.1%).通过高温反应及特殊的冷却处理,LiNi0.5Mn1.5O4在4.0 V低压区平台的容量损失得到了有效抑制.更重要的是,通过控制合成过程中的关键步骤,可实现半定量化控制材料结构中的原子有序排布程度,进而得到具有高能量密度和高功率密度的两种LiNi0.5Mn1.5O4材料,其能量密度和功率密度分别达到了648.6 mWh·g-1和7000 mW·g-1以上.  相似文献   
5.
Bi-substituted yttrium iron garnet (Bi-YIG, Bi1.8Y1.2Fe5O12) nanoparticles were prepared by microwave-assisted co-precipitation as well as conventional co-precipitation using ammonia aqueous solution as precipitant. The nanoparticles were characterized by thermal gravity-differential thermal analysis, X-ray powder diffraction, transmission electron microscopy, dynamic light scattering and vibrating sample magnetometer, respectively. The Faraday rotation of Bi-YIG modified PMMA slices was also investigated. Results demonstrate that the Bi-YIG nanoparticles prepared by microwave-assisted co-precipitation show smaller particle size and higher Faraday rotation than those prepared by conventional co-precipitation.  相似文献   
6.
Nano-sized Cu6Sn5 alloy powders were prepared by a co-precipitation reductive route using a hydrothermal method at 80 °C. The nano-size and morphology of the synthesized Cu6Sn5 alloy powders were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained morphologies, chemical compositions are comparatively discussed. A variety of synthesis parameters, such as time, capping agent and sort of reductant, has an effect on the morphology of the obtained materials, and will be particularly highlighted.  相似文献   
7.
Potassium substituted nanosized magnesium aluminates having a nominal composition Mg1−xKxAl2O4 where x=0.0, 0.25, 0.5, 0.75, 1.0 have been synthesized by the chemical co-precipitation method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and dc electrical resistivity measurements. The XRD results reveal that the samples are spinel single phase cubic close packed crystalline materials. The calculated crystallite size ranges between 6 and 8 nm. The behaviour of the lattice constant seems to deviate from the Vegard's law. While X-ray density clearly increases, the bulk density and consequently, the percentage porosity do not exhibit a significant change on increasing the K+ content. The SEM micrographs suggest homogeneous distribution of the nanocrystallites in the samples. The dc electrical resistivity exhibits a typical semiconducting behaviour. Substitution of a Mg2+ ion by a K+ ion provides an extra hole to the system, which forms small polaron. Thermally activated hopping of these small polarons is believed to be the conduction mechanism in the Mg1−xKxAl2O4. The activation energy of hopping of small polarons has been calculated and found K+ ions content dependent.  相似文献   
8.
Barium ferrites substituted by Mn-Sn, Co-Sn, and Mn-Co-Sn with general formulae BaFe12−2xMnxSnxO19 (x=0.2-1.0), BaFe12−2xCoxSnxO19 (x=0.2-0.8), and BaFe12−2xCox/2Mnx/2SnxO19 (x=0.1-0.6), respectively, have been prepared by a previously reported co-precipitation method. The efficiency of the method was refined by lowering the reaction temperature and shortening the required reaction time, due to which crystallinity improved and the value of saturated magnetization increased as well. Low coercivity temperature coefficients, which are adjustable by doping, were achieved by Mn-Sn and Mn-Co-Sn doping. Synthesis efficiency and the effect of doping are discussed taking into account accumulated data concerning the synthesis and crystal structure of ferrites.  相似文献   
9.
Nanocrystalline Co-Ni alloys with different compositions were prepared by polyol reduction of mixed cobalt nickel hydroxides. The precursors (mixed cobalt nickel hydroxides) were prepared by co-precipitation. Powder X-ray diffraction analysis indicated the formation of fcc phase in the alloys and their crystallite size in the range 17-25 nm. Scanning electron microscopy and transmission electron microscopy studies revealed the morphology of the particles as being close to spherical, and the energy dispersive X-ray analysis showed the stoichiometry of the alloys. The magnetization as a function of field and temperature of the alloys, measured using a superconducting quantum interference device, showed superparamagnetic behavior with negligible coercivity and remanence values.  相似文献   
10.
NaYF4∶Eu3+, Tm3+, Yb3+材料中Stokes和反Stokes发光研究   总被引:1,自引:0,他引:1  
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料。360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发呈橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nm光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm。蓝光来源Tm3+的1G4 →3H6跃迁,红光来源Tm3+的1G4→3F4跃迁。在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程。还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观形貌。结果表明:NaYF4∶Eu3+, Tm3+, Yb3+材料具有较规则的六方相结构,结晶良好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号