首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
化学   24篇
物理学   1篇
综合类   4篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2000年   1篇
  1997年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有29条查询结果,搜索用时 62 毫秒
1.
The present study is based on the measurement of selected metals (Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) in the fruits of eight medicinal plants (Carrisa opeca, Phyllanthus emblica, Solanum nigrum, Zizyphus nummularia, Zizyphus mauritiana, Physalis minima, Opuntia dillenii and Phoenix dactylifera) and relevant soil samples by atomic absorption spectrometry. Highest average concentrations of Cu (14.4 mg/kg), Cr (19.0 mg/kg), and Zn (125 mg/kg) were found in the fruits of P. minima, C. opeca and Z. nummularia, respectively, while O. dillenii showed the elevated mean levels of Cd (3.49 mg/kg), Sr (61.4 mg/kg), Mg (0.21%), Ca (6.62%) and Mn (44.6 mg/kg). However, highest average levels of Pb (41.7 mg/kg) and Co (38.4 mg/kg) were found in Z. mauritiana. Overall, most of the fruit samples showed higher contributions of Ca and Mg, followed by Fe, Zn, Co and Pb. In the case of soil samples, highest concentration was observed for Ca, followed by Fe, Mg, Mn and Sr, while lowest concentration was shown by Cd. Bioaccumulation factors exhibited significantly higher accumulation of Co (0.813–1.829) and Pb (0.060–2.350) from the soil to the fruits. Principal component analysis revealed significant anthropogenic contributions of Pb, Fe and Co in the fruit samples. Contamination factors and enrichment factors of Cd and Pb in the soil indicated very high contamination and extreme enrichment of these metals.  相似文献   
2.
The determination of nicotine and its major metabolites (cotinine and anabasine) in fish tissue was performed using liquid chromatography and tandem mass spectrometry. Marine and freshwater fish were purchased from local grocery stores and were prepared based on a quick, easy, cheap, effective, rugged, and safe sample preparation protocol. To determine the highly polar compounds, hydrophilic interaction liquid chromatography was also used. There were modest suppressions on measured nicotine signals (10%) due to the matrix effects from marine fish but no obvious effects on freshwater fish signals. Method validation was incorporated with internal standards and carried out with matrix‐matched calibration. The detection limits for nicotine, cotinine, and anabasine were 9.4, 3.0, and 1.5 ng/g in fish, respectively. Precision was quite acceptable returning less than 8% RSD at low, medium, and high concentrations. Acceptable and reproducible extraction recoveries (70–120%) of all three compounds were achieved, except for anabasine at low concentration (61%). The method was then applied to define nicotine bioaccumulation in a fathead minnow model, which resulted in rapid uptake with steady state internal tissue levels, reached within 12 h. This developed method offers a fast, easy, and sensitive way to evaluate nicotine and its metabolite residues in fish tissues.  相似文献   
3.
Elements found in the edible parts of plants are considered to be the main source of nutrients for humans and animals. However, there is insufficient information on the relationship between heavy metal pollution in the growing soil of most edible plants. In this study, the distribution of elements in the edible forest nettle (Laportea alatipes) was evaluated as a function of geographical location. Forest land soils had higher concentrations of minor elements (Cu, Cr, Ni, and Zn) compared to soils from rural and suburban areas. Translocation factors for Cd and Pb showed effective translocation from the roots to the leaves; however, these heavy metals in leaves were still above South African maximum permissible levels for vegetables. Atmospheric depositions may play a significant role in higher Cd and Pb concentrations in the leaves. Bioaccumulation factors showed the plant to accumulate Cu, Mn, and Zn to meet physiological requirement levels. Geoaccumulation indices and enrichment factors showed no soil contamination or minimal enrichment by trace metals. Principal component analysis showed Co, Cr, Cu, Fe, Ni, Pb, and Zn in soil to originate from a common source which may be soil silicates and other minerals.  相似文献   
4.
苔藓植物是一类重要的环境指示植物,在环境监测中发挥着非常重要的作用。自从苔藓档物富集重金属的富集特性被发现以来,国内外的相关研究陆续展开。从苔藓植物的重金属富集作用、生理生化机制等方面评述了苔藓植物重金属富集方面的研究进展。  相似文献   
5.
The biodesalination performance of the cyanophycean Phormidium keutzingianum concentrated using two methods (centrifugation and immobilization) was evaluated for the first time at NaCl concentrations of 10, 30, 50, and 70 g/L. In addition, the osmoregulation ability of P. keutzingianum was assessed at high salinities (50, 70, 85, and 100 g/L) over a relatively short time period. The pH, electrical conductivity, and chloride, nitrate, and phycocyanin concentrations were measured during all experiments. The immobilization method of concentration resulted in a chloride removal rate of up to 44 % during the osmoregulation experiment at a salinity of 100 g/L. For the centrifugation method, the chloride removal rate was 26 % on the 20th day of observation for 10 g/L. Thus, the immobilization method resulted in faster chloride ion removal than the centrifugation method. The findings demonstrate that biodesalination efficiency can be enhanced by the use of different P. keutzingianum preparation methods.  相似文献   
6.
Microplastics (MPs) and other emerging pollutants exist together in the environment and their co-exposure represents a source of increasing concern as MPs have been reported to act as carriers of pollutants due to their high sorption capacity. The ingestion of contaminated MPs by organisms can enhance the desorption of pollutants, increasing their bioavailability and toxicity. This review examines the role of MPs as vectors of environmental emerging contaminants. First, the main tools used to identify and characterise MPs and the analytical methods used for the determination of associated emerging contaminants are discussed. Insightful explanations of the sorption interaction between several groups of emerging pollutants and MPs are provided. MP type (polarity, crystallinity, size) and aging process together with the environmental conditions and pollutant properties (hydrophobicity and dissociated forms) are key factors influencing the sorption process. The literature review showed that polyethylene and polystyrene were the most commonly studied polymers. Antibiotics, perfluoroalkyl compounds and triclosan showed high sorption capacities onto MPs. Finally, the effect of co-exposure to MPs-emerging pollutants and bioaccumulation in aquatic and terrestrial organisms is discussed. The combined exposure may impact the toxic effects in different ways, through synergistic or antagonic interactions. Examples of different scenarios are provided, but in general the research conducted on terrestrial systems is scarce. The results revealed a lack of standardization in laboratory studies and in the testing conditions that reflect actual environmental exposure.  相似文献   
7.
Chojnacka K 《Talanta》2006,70(5):966-972
Supplementation of microelements (Mn, Zn, Cu, Cr) to livestock diet is of particular concern. There are various mineral feed additives available on the market. The most frequently used are inorganic feed additives, characterized with low bioavailability and high toxicity. Also, organic feed additives are used, including amino acids chelates, in which bioavailability was greatly improved and toxicity reduced. The problem is high price of these products. Therefore, there is the need to search for new biological mineral feed additives with designed composition, that would be characterized with high bioavailability, low toxicity, low cost and that would also possess a nutritional value. Such a possibility offers biological materials. It was found that biomaterials have metal-binding capabilities. Metal ions may be bound to biomass via either biosorption or bioaccumulation process.

When elaborating technology of the production of feed additives, containing simultaneously various elements, it is necessary to use the tool of multielemental analysis in order to simultaneously analyze the content of Mn, Zn, Cu, Cr. In the present work, ICP-OES multielemental analysis was used to investigate the process of production of mineral feed additives based on the biomass of aquatic plant Lemna minor. The effectiveness of the processes of biosorption and bioaccumulation of microelements by an aquatic plant L. minor was studied. The mechanism of the process as well as equilibrium was investigated with the use of multielemental analysis by ICP-OES Vista-MPX instrument from Varian (Australia).  相似文献   

8.
An arsenic-resistant blue-green alga, Nostoc sp., was screened from an arsenic-polluted environment. The effects of the culture conditions on the growth and the arsenic bioaccumulation were investigated. In five culture media tested, Microcystis aeruginosa medium was found to be optimum for the growth. The effects of the concentration of five nutrients (P, Co, Fe, Mo and N) in the MA medium on arsenic bioaccumulation by the Nostoc sp. were also investigated. From the experimental results, the authors proposed a new culture medium which was designed for effective arsenic bioaccumulation by the Nostoc sp. The new medium was named the Modified MA medium (abbreviated as MMA). Removal of arsenic from an aqueous phase by means of arsenic bioaccumulation by the Nostoc sp. was investigated. When arsenic-polluted water was enriched with the nutrients of MMA, the arsenic level was found to be effectively lowered by the Nostoc sp. to 0.05 ppm.  相似文献   
9.
The aim of this study was to investigate (1) whether intestine endoparasites (Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.  相似文献   
10.
To study the characteristics of antimony (Sb) bioaccumulation under high Sb background values, aquatic, amphibious and terrestrial biological samples were collected in the vicinity of the Xikuangshan (XKS) Sb mine area in China. Hydride generation-atomic fluorescence (HG-AFS) analysis showed that Sb concentrations in terrestrial invertebrates (average 30,400 μg kg− 1 dry wt.) were higher than those in aquatic (average 5200 μg kg− 1 dry wt.) and amphibian (average 2300 μg kg− 1 dry wt.) biological samples. Within 1 km distance of the XKS Sb mine area, grasshoppers (Acrida chinensis) and earthworms (Pheretima aspergillum) had the highest Sb amounts of 17,300 ±3200 and 43,600 ± 47,700 μg kg− 1 dry wt., respectively. No Sb biomagnifications were observed. The bioavailability of Sb was found to be lower than those of As and Hg. A preliminary conclusion is that antagonistic effects exist between Sb and Hg accumulation in biological samples from aquatic environments. Our study is the first to report such antagonistic effects between Sb and Hg. If this deduction proves to be correct, it should be taken into consideration in assessing human health risks, especially when Sb and Hg concentrations in the aquatic environments are high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号