首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41990篇
  免费   2402篇
  国内免费   5447篇
化学   33460篇
晶体学   658篇
力学   282篇
综合类   193篇
数学   2267篇
物理学   5631篇
综合类   7348篇
  2024年   46篇
  2023年   303篇
  2022年   623篇
  2021年   748篇
  2020年   815篇
  2019年   2016篇
  2018年   980篇
  2017年   1969篇
  2016年   1258篇
  2015年   1236篇
  2014年   1620篇
  2013年   3058篇
  2012年   2504篇
  2011年   2656篇
  2010年   1951篇
  2009年   2343篇
  2008年   2663篇
  2007年   2838篇
  2006年   2629篇
  2005年   2269篇
  2004年   2300篇
  2003年   1944篇
  2002年   1643篇
  2001年   1339篇
  2000年   1313篇
  1999年   988篇
  1998年   860篇
  1997年   778篇
  1996年   646篇
  1995年   633篇
  1994年   494篇
  1993年   428篇
  1992年   435篇
  1991年   309篇
  1990年   209篇
  1989年   173篇
  1988年   155篇
  1987年   98篇
  1986年   69篇
  1985年   70篇
  1984年   64篇
  1983年   23篇
  1982年   52篇
  1981年   63篇
  1980年   40篇
  1979年   62篇
  1978年   32篇
  1977年   23篇
  1976年   24篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
3.
4.
A sensitive, specific and reproducible HPLC method has been developed and validated for the quantitative determination of 6‐methylcoumarin (6MC) in plasma and other tissues in Wistar rats. A C18 column was used with UV detection at 321 nm and a gradient system consisting of methanol‐deionized water was used as mobile phase. The retention time for 6MC was 14.921 min and no interfering peaks were observed for any of the matrices. Linear relationships (r2 > 0.997) were obtained between the peak height ratios and the corresponding biological sample concentrations over the range 0.4–12.8 µg/mL. Precision and accuracy were evaluated; the coefficient of variation and the relative error for all of the organs were <2 and 7%, respectively. The limit of quantitation was 0.20 µg/mL for the heart and 0.30 µg/mL for the other tissues evaluated. This HPLC method was successfully used in the determination of 6MC in the biodistribution study after administration of 200 mg/kg of both 6MC‐free and 6MC‐loaded polymeric microparticles. In this study, extensive 6MC was found, in both free and microencapsulated forms, in all the organs tested. The 6MC‐free showed a range of between 1.7 and 11.5 µg/g, while the microencapsulated 6MC showed concentrations of between 6.35 and 17.7 µg/g, suggesting that 6MC improved absorption rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Processing of Carapa guianensis seeds to obtain oil on an industrial scale generates a significant amount of by-product, approximately 66% w/w, which is called cake and is a potential source of biomolecules, including simple phenolic structures. For this reason, studies were carried out on the chemical profiles of hydrolyzed extract from this agro-industrial by-product through High Performance Thin-Layer Chromatography (HPTLC) and Gas Chromatography coupled to Mass Spectrometry (GC–MS). These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product. The sample antioxidant capacity was determined by methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH)and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radicals direct sequestration. The hydrolyzed fraction showed a total of 63.47% in the relative abundance of the total of compounds, standing out: p-hydroxybenzoic acid (39.19%) and protocatechuic acid (3,4-dihydroxybenzoic acid) (5.62%), both from hydroxybenzoic acids and 3-(3,4-dihydroxyphenyl)lactic acid, (7.76%) hydroxycinnamic acids derivatives. In these results, the fraction rich in simple phenolic acids was obtained, attributing the prominent behavior of this matrix antioxidant activity, expressed by (IC50: of 16.42 µg/mL and 6.52 µg/mL for DPPH and ABTS+ radicals, respectively). The research demonstrated an alternative to applicability that involves sustainability from agro-industrial. These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product, generating a process capable of converting biomass into a bioproduct, consisting of bioactive compounds, in addition to adding value to the industrial chain.  相似文献   
7.
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of −49.0507 Kcal/mol than −29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by “strong” electrostatic energy compared to the “weak” van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.  相似文献   
8.
采用金相显微镜、扫描电镜、电子拉伸机等,研究了激光快速成型TC4合金沉积态在平行沉积方向和垂直沉积方向的组织和力学性能.结果表明:激光快速成型TC4合金沉积态宏观组织沿沉积方向生长的粗大β柱状晶呈明暗相间的条带状结构,具备典型的魏氏组织特征;垂直沉积方向的强度比平行沉积方向的强度高,但塑性低;合金断口为韧窝状断口,垂直沉积方向的断口韧窝尺寸比平行沉积方向的小.  相似文献   
9.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
10.
利用X射线光电子能谱(XPS)测试5,10,15,20-四-(对羟基苯基)卟啉单体和5,10,15,20-四-(对羟基苯基)卟啉自组装二聚体,并通过化学模拟得到卟啉自组装二聚体分子的最优构象.结果表明:两种卟啉化合物中氧原子的类型不同;在单体卟啉中未检测到瞬态表面光电压信号,卟啉自组装二聚体表现出较好的瞬态表面光伏特性;卟啉自组装二聚体的光限幅性质优于卟啉1单体.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号