首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93859篇
  免费   8360篇
  国内免费   16275篇
化学   69911篇
晶体学   1986篇
力学   1032篇
综合类   589篇
数学   4458篇
物理学   17192篇
综合类   23326篇
  2024年   254篇
  2023年   1381篇
  2022年   2650篇
  2021年   2737篇
  2020年   3142篇
  2019年   2760篇
  2018年   2528篇
  2017年   2886篇
  2016年   3118篇
  2015年   2967篇
  2014年   4957篇
  2013年   7704篇
  2012年   5729篇
  2011年   6465篇
  2010年   5501篇
  2009年   6494篇
  2008年   6286篇
  2007年   6424篇
  2006年   5916篇
  2005年   5208篇
  2004年   4962篇
  2003年   4189篇
  2002年   3329篇
  2001年   2709篇
  2000年   2589篇
  1999年   2255篇
  1998年   1806篇
  1997年   1611篇
  1996年   1394篇
  1995年   1371篇
  1994年   1201篇
  1993年   1020篇
  1992年   969篇
  1991年   763篇
  1990年   592篇
  1989年   511篇
  1988年   420篇
  1987年   278篇
  1986年   178篇
  1985年   180篇
  1984年   144篇
  1983年   65篇
  1982年   104篇
  1981年   128篇
  1980年   97篇
  1979年   96篇
  1978年   73篇
  1977年   85篇
  1976年   73篇
  1973年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
《Mendeleev Communications》2022,32(1):126-128
3-Aryl-5-methylidene-2-thiohydantoins were constructed in one-pot reaction of aryl isothiocyanates and 3-morpholino- alanine in alkaline medium with the subsequent treatment with boiling hydrochloric acid.  相似文献   
3.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
4.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
5.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
6.
《Mendeleev Communications》2022,32(4):507-509
We report on the synthesis of new Ru(bpy)2(phen) catalyst for the oscillatory Belousov–Zhabotinsky chemical reaction and on the preparation of novel Ru(bpy)2(phen)-based self-oscillating gels. The synthesized gels exhibit high-amplitude autonomous mechanical oscillations when the Belousov–Zhabotinsky reaction proceeds inside these gels  相似文献   
7.
《Mendeleev Communications》2022,32(4):537-539
The two novel conglomerates were obtained by crystallization of racemic (2'S,3aS,6aR)/(2'R,3aR,6aS) (glycoluril-1-yl)-3-methylbutanoic acid and (2'R,3aR,6aR)/(2'S,3aS,6aS) (4,6-dimethylglycoluril-1-yl)pentanoic acid synthesized by highly diastereoselective condensation of 4,5-dihydroxy- imidazolidin-2-ones with racemic ureido acids. The differences in the molecular geometry of synthesized racemates were studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna21 and P212121, respectively  相似文献   
8.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
9.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
10.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号