首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   64篇
  国内免费   15篇
化学   155篇
晶体学   5篇
力学   2篇
物理学   34篇
无线电   88篇
  2024年   4篇
  2023年   19篇
  2022年   8篇
  2021年   23篇
  2020年   32篇
  2019年   11篇
  2018年   12篇
  2017年   16篇
  2016年   13篇
  2015年   16篇
  2014年   18篇
  2013年   11篇
  2012年   9篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   6篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   11篇
  1996年   3篇
  1995年   1篇
  1994年   9篇
  1992年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
1.
2.
The structure of the silica aerogels was studied by Raman spectroscopy. The spectra of the solid network resembles that of bulk silica with additional bands related to organic groups and a large amount of OH groups.The typical bands due to ring breathing also called defect bands D 1 and D 2 located at 490 and 610 cm–1 are present. However, the evolution of the D 2 band compared to that of OH band (980 cm–1) seems apparently, in contradiction with the results previously reported in the literature. During heat treatments between 25 and 300°C the D 2 and the OH bands increase simultaneously. Generally, in silica glass the defect band D 2 grows at the expense of the OH groups.This result is explained by the oxidation of the organic compounds which, in this temperature range, leads to the formation of the both species (OH) and those related to siloxane rings. 29Si MAS NMR results are in agreement with the Raman study.  相似文献   
3.
Dissolution and reprecipitation of silica during aging in water improve the wet gels mechanical stiffness and strength, and hence shrinkage during supercritical drying is reduced. We have investigated how the strength and stiffness of a 2-step TEOS acid-base catalyzed wet gel can be improved by aging in a solution of water/ethanol (20–40 vol%) at various temperatures (20–70°C) and time (2 h and 24 h) and how this influences the aerogels properties. The linear shrinkage during supercritical drying was reduced from 29% to 2% by introducing the aging step in the 20 vol% water/ethanol solution for 24 h at 60°C.We have also in previous works introduced the idea of preparing ambient pressure dried silica aerogels by increasing the wet gels stiffness by aging in a TEOS solution until shrinkage during drying is almost eliminated. The gels aged in the water/ethanol solutions were further aged in a TEOS/ethanol solution and the effect of the increasing water content in the pore liquid was studied. A xerogel density of 0.20 g/cm3 is reported for gels with a shear modulus (G) of 30 MPa.  相似文献   
4.
Iron-Cobalt-Silica nanocomposites were prepared in form of aerogels. X-ray diffraction, transmission electron microscopy and N2 physisorption at 77 K were used to investigate the structure, size and dispersion of the nanocrystals and the porous structure in the aerogels and in the final composites. The variation of the supercritical drying conditions gives rise to differences in the morphological features of the aerogels. These differences influence the size of the cobalt oxide nanoparticles in the aerogels. On the other hand, after the reduction treatment the average size of the alloy nanoparticles is the same in all the aerogel nanocomposites. The effect of reduction temperature on alloy formation and particle size is also discussed.  相似文献   
5.
Silica aerogels, a type of porous material featuring extra low density and thermal conductivity, have drawn increasing interest from both academia and industry owing to their excellent thermal insulation performance. However, thermal insulation is always the single consideration when silica aerogels are used for thermal management. In this study, the on-demand thermal management (ODTM) of silica aerogel with either passive thermal insulation, passive heating, or passive cooling in different environments is revealed. The ODTM behavior of silica aerogels can be simply fulfilled through their optical property variations such as solar light transparency and infrared emissivity, which are controllable via the microstructures of the building blocks and surface composition design. Robust solar heating of 25 °C higher than the ambient in the daytime and sub-ambient cooling of 7 °C at night is achieved with the traditional transparent silica aerogel. Interestingly, sub-ambient cooling of 5 °C in the daytime and a warmer state on cold nights is achieved by modifying its solar transmittance and infrared emissivity. This study guides a comprehensive understanding of the thermal management behavior of silica aerogels and leads to ODTM applications of silica aerogels by tailoring their optical and thermal conductivity properties.  相似文献   
6.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   
7.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   
8.
The evolution of the texture of silica aerogels during sintering is studied by thermoporometry for both neutral and base catalysed materials.During the densification the macroporous volume drops and the analysis of the mesopore size distribution evolution shows that the collapse of the smallest mesopores is responsible for the macropore volume transformation. However, corrections of the measured volumes are necessary to characterize the most compliant materials.  相似文献   
9.
We present a microstructural model of aerogels that includes the effect of particle necks, tortuosity and dangling ends on the scaling of elastic moduli with density. Relative neck radii can be determined for sintering series of silica aerogels and for Resorcinol Formaldehyde (RF) aerogels produced with different catalyst concentrations. The density of elastically ineffective dangling ends and the tortuosity can be estimated using information from thermal conductivity and elastic modulus measurements in silica aerogels. Typical values for the load bearing mass range from >50% for high density and heat treated aerogels to <10% of the total mass for low density wet-gels.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号