首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   78篇
  国内免费   15篇
化学   96篇
力学   5篇
数学   2篇
物理学   9篇
无线电   214篇
  2024年   8篇
  2023年   24篇
  2022年   8篇
  2021年   37篇
  2020年   40篇
  2019年   30篇
  2018年   19篇
  2017年   19篇
  2016年   24篇
  2015年   20篇
  2014年   12篇
  2013年   15篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   10篇
  2008年   4篇
  2007年   2篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
1.
2.
本文根据火焰熔融法自制碳纤维电极的特点,提出了一种简便、易行的火焰灼烧再生电极的新方法。由此法再生电极的各种性能与原电极相当,结果令人满意。  相似文献   
3.
A novel approach to the fabrication of metal ring-disk (RD) microelectrodes is presented that employs flexible chemical vapor deposition (CVD) and electrode modification techniques. Specifically, the development of a copper ring-disk microelectrode is described utilizing a combination of CVD coating, electroetching, and electroplating. Initially, a 25 μm diameter tungsten wire is concentrically coated by CVD with an insulating layer of silica, a layer of tungsten metal, and finally, a second outer layer of silica. The copper surface was prepared by first creating micrometer cavities by electrochemical etching the tungsten in hydroxide solutions followed by electrodeposition of copper from aqueous solutions of Cu(II). Each step of the process was characterized by scanning electron microscopy, optical microscopy, and cyclic voltammetry, demonstrating the preparation of a viable metal-based dual ring-disk microelectrode system. For the purpose of demonstrating the concept of introducing specific selectivity into the device, amperometric detection of galactose in 0.1 M NaOH was performed at +0.60 V in bulk solution and after flow injection analysis in a capillary column.  相似文献   
4.
The desirable implantable neural interfaces can accurately record bioelectrical signals from neurons and regulate neural activities with high spatial/time resolution, facilitating the understanding of neuronal functions and dynamics. However, the electrochemical performance (impedance, charge storage/injection capacity) is limited with the miniaturization and integration of neural electrodes. The “crosstalk” caused by the uneven distribution of elctric field leads to lower electrical stimulation/recording efficiency. The mismatch between stiff electrodes and soft tissues exacerbates the inflammatory responses, thus weakening the transmission of signals. Though remarkable breakthroughs have been made through the incorporation of optimizing electrode design and functionalized nanomaterials, the chronic stability, and long-term activity in vivo of the neural electrodes still need further development. In this review, the neural interface challenges mainly on electrochemistry and biology are discussed, followed by summarizing typical electrode optimization technologies and exploring recent advances in the application of nanomaterials, based on traditional metallic materials, emerging 2D materials, conducting polymer hydrogels, etc., for enhancing neural interfaces. The strategies for improving the durability including enhanced adhesion and minimized inflammatory response, are also summarized. The promising directions are finally presented to provide enlightenment for high-performance neural interfaces in future, which will promote profound progress in neuroscience research.  相似文献   
5.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   
6.
Polymer-dispersed liquid crystal (PDLC) devices are truly promising optical modulators for information display, smart window as well as intelligent photoelectronic applications due to their fast switching, large optical modulation as well as cost-effectiveness. However, realizing highly soft PDLC devices with sensing function remains a grand challenge because of the intrinsic brittleness of traditional transparent conductive electrodes. Here, inspired by spiderweb configuration, a novel type of silver nanowires (AgNWs) micromesh-based stretchable transparent conductive electrodes (STCEs) is developed to support the realization of soft PDLC device. Benefiting from the embedding design of AgNWs micromesh in polydimethylsiloxane (PDMS), the STCEs can maintain excellent electrical conductivity and transparency even in various extreme conditions such as bending, folding, twisting, stretching as well as multiple chemical corrosion. Further, STCEs with the embedded AgNWs micromesh endow the assembled PDLC device with excellent photoelectrical properties including rapid switching speed (<1 s), large optical modulation (69% at 600 nm), as well as robust mechanical stability (bending over 1000 cycles and stretching to 40%). Moreover, the device displays the pressure sensing function with high sensitivity in response to pressure stimulus. It is conceivable that AgNWs micromesh transparent electrodes will shape the next generation of related soft smart electronics.  相似文献   
7.
Stretchable ultra-narrow (e.g., 10 µm in width) microelectrodes are crucial for the electrophysiological monitoring of single cells providing the fundamental understanding to the working mechanism of neuro network or other electrically functional cells. Current fabrication strategies either focus on the preparation of normal stretchable electrodes with hundreds of micrometers or millimeters in width by using inorganic conductive materials or develop conductive organic polymer gel for ultra-narrow electrodes which suffer from low stretchability and instability for long-term implantation, therefore, it is still highly desirable to explore bio-interfacial ultra-narrow stretchable inorganic electrodes. Herein, a hybrid strategy is reported to prepare ultra-narrow multi-channel stretchable microelectrodes without using photolithography or laser-assisting etching. A 10 µm × 10 µm monitoring window is fabricated with enhanced interfacial impedance by the special rough surface. The stretchability achieves to 120% for this 10 µm-width stretchable electrode. Supported by these superior properties, it is demonstrated that the stretchable microelectrodes can detect electrophysiological signals of single cells in vitro and collect electrophysiological signals more precisely in vivo. The reported strategy will open up the accessible preparation of the fine-size stretchable microelectrode. It will significantly improve the resolution of monitoring and stimulation of inorganic stretchable electrodes.  相似文献   
8.
In this article, we have summarized the recent important results related to the electrochemical detection of vesicular exocytosis by amperometry with microelectrodes over the past three years. In this fascinating scientific field that began 40 years ago, the historical carbon fiber amperometry method still continues to be used to address biological questions by the pioneered groups of the field but also by other research groups thus showing this has become an indispensable routine technique for analyzing exocytosis. Furthermore, new methodologies (coupling with fluorescence, use of nanoelectrodes, microarrays) have blossomed and demonstrated how new analytical methods could be built to push back the limits of the initial technique.  相似文献   
9.
鲁路  周长忍 《高分子科学》2016,34(2):185-194
Herein, we present a novel way for the production of self-healing hydrogels with stretch beyond 4200% than their initial length and relatively high tensile strength(0.1?0.25 MPa). Furthermore, the hydrogel was insensitive to notch. Even for the samples containing V-notches, a stretch of 2300% was demonstrated. The hydrogels were developed by in situ crosslinking of the self-assembled colloidal poly(acrylic acid)(PAA)/functionalized polyhedral oligomeric silsesquioxane(POSS) micelles. This was achieved by the addition of functionalized polyhedral oligomeric silsesquioxane with tertiary amines and hydroxyls(POSS-AH) into the PAA reaction solution. The POSS-AH led to micellar growth, then the dualcrosslinked network was constructed. One type of crosslink was formed by hydrogen-bonding and ionic interactions between PAA chains and POSS-AH, the other type of crosslink was formed by covalent bonds between PAA and bis(N,N'-methylenebis-acrylamide).  相似文献   
10.
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号