首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   11篇
  国内免费   6篇
化学   7篇
物理学   15篇
无线电   44篇
  2024年   1篇
  2023年   8篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2006年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 593 毫秒
1.
本文提出了一种用线阵CCD非接触实时测量塑料导线直径的仪器,它有如下特点:(1)采用了对被测目标所发出的烟雾不敏感的光学系统,提高了测量精度;(2)采用工作于脉冲方式的大功率近红外LED做照明光源,其寿命比采用白炽灯作为光源大为增长,同时缩小了体积并有利于抑制可见光的干扰;(3)对电信号采用了两级滤波、直流恢复、自适应阈值二值化等处理技术;(4)采用定标的方法来消除目标位置移动的影响,提高了测量精度,降低了加工装配精度要求。现场使用证明,它能长期可靠地工作,总的测量误差小于±0.02mm。  相似文献   
2.
Polarization‐sensitive photodetection in the UV region is highly indispensable in many military and civilian applications. UV‐polarized photodetection usually relies on the use of wide bandgap semiconductors with 1D nanostructures requiring complicated nanofabrication processes. Although the emerging anisotropic 2D semiconductors shed light on the detection of polarization with a simple device architecture, bandgaps of such reported 2D semiconductors are too small to be applied for visible–blind UV‐polarized photodetection. Here, germanium disulfide (GeS2), the widest bandgap (>3 eV) in the family of in‐plane anisotropic 2D semiconductors explored to date, is introduced as an ideal candidate for UV‐polarized photodetection. The structural, vibrational, and optical anisotropies of GeS2 are systematically investigated from theory to experiment. GeS2‐based photodetectors show a strong polarization‐dependent photoresponse in the UV region. GeS2 with a wide bandgap and high in‐plane anisotropy not only enriches the family of anisotropic 2D semiconductors but also expands the polarized photodetection from the current visible and near‐infrared to the brand‐new UV region.  相似文献   
3.
Two-dimensional(2D) atomic crystals,such as graphene,black phosphorus(BP) and transition metal dichalcogenides(TMDCs) are attractive for use in optoelectronic devices,due to their unique crystal structures and optical absorption properties.In this study,we fabricated BP/ReS2 van der Waals(vdWs) heterojunction devices.The devices realized broadband photoresponse from visible to near infrared(NIR)(400–1800 nm) with stable and repeatable photoswitch characteristics,and the photoresponsivity reached 1.8 mA/W at 1550 nm.In addition,the polarization sensitive detection in the visible to NIR spectrum(532–1750 nm) was demonstrated,and the photodetector showed a highly polarization sensitive photocurrent with an anisotropy ratio as high as 6.44 at 1064 nm.Our study shows that van der Waals heterojunction is an effective way to realize the broadband polarization sensitive photodetection,which is of great significance to the realization and application of multi-functional devices based on 2D vdWs heterostructures.  相似文献   
4.
Due to the limited carrier concentration, 2D transition metal dichalcogenides have lower intrinsic dark current, and thus, are widely studied for high performance room photodetection. However, the light-matter interaction is still unclear, thus tuning the photoexcitation and further manipulating the photodetection is a challenge. Herein, large-area PtS films are synthesized, and the growth mechanism is investigated. It is demonstrated that PtS has an orthorhombic structure and exhibits the p-type semiconducting behavior. Then, MoS2/PtS p–n heterojunction is fabricated, and its energy diagram is discussed based on the Kelvin probe force microscopy. The contact potential difference is about 160 mV, which is much larger than previous 2D junctions facilitating the charge separation. Furthermore, the phototransistor based on MoS2/PtS p–n heterojunction is prepared, showing broadband photoresponse from visible to near-infrared. The manipulation of an external field on photoresponse, detectivity, and rise/fall time are explored and discussed. The responsivity can reach up to 25.43 A W−1, and the detectivity is 8.54 × 1012 Jones. These results indicate that PtS film is a prospective candidate for high-performance optoelectronic devices and broaden the scope of infrared detection materials.  相似文献   
5.
Van der Waals (vdW) heterostructures composing of organic molecules with inorganic 2D crystals open the door to fabricate various promising hybrid devices. Here, a fully ordered organic self-assembled monolayer (SAM) to construct hybrid organic–inorganic vdW heterojunction phototransistors for highly sensitive light detection is used. The heterojunctions, formed by layering MoS2 monolayer crystals onto organic [12-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)dodecyl)]phosphonic acid SAM, are characterized by Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy. Remarkably, this vdW heterojunction transistor exhibits a superior photoresponsivity of 475 A W−1 and enhanced external quantum efficiency of 1.45 × 105%, as well as an extremely low dark photocurrent in the pA range. This work demonstrates that hybridizing SAM with 2D materials can be a promising strategy for fabricating diversified optoelectronic devices with unique properties.  相似文献   
6.
The control of optical and transport properties of semiconductor heterostructures is crucial for engineering new nanoscale photonic and electrical devices with diverse functions. Core–shell nanowires are evident examples of how tailoring the structure, i.e., the shell layer, plays a key role in the device performance. However, III–V semiconductors bandgap tuning has not yet been fully explored in nanowires. Here, a novel InAs/AlSb core–shell nanowire heterostructure is reported grown by molecular beam epitaxy and its application for room temperature infrared photodetection. The core–shell nanowires are dislocation‐free with small chemical intermixing at the interfaces. They also exhibit remarkable radiative emission efficiency, which is attributed to efficient surface passivation and quantum confinement induced by the shell. A high‐performance core–shell nanowire phototransistor is also demonstrated with negative photoresponse. In comparison with simple InAs nanowire phototransistor, the core–shell nanowire phototransistor has a dark current two orders of magnitude smaller and a sixfold improvement in photocurrent signal‐to‐noise ratio. The main factors for the improved photodetector performance are the surface passivation, the oxide in the AlSb shell and the type‐II bandgap alignment. The study demonstrates the potential of type‐II core–shell nanowires for the next generation of photodetectors on silicon.  相似文献   
7.
Tribotronics is a new field developed by coupling triboelectricity and semiconductor, which can drive triboelectric‐charge‐controlled optoelectronic devices by further introducing optoelectronics. In this paper, a tribotronic phototransistor (TPT) is proposed by coupling a field‐effect phototransistor and a triboelectric nanogenerator (TENG), in which the contact‐induced inner gate voltage by the mobile frictional layer is used for modulating the photodetection characteristics of the TPT. Based on the TPT, alternatively, a coupled energy‐harvester (CEH) is fabricated for simultaneously scavenging solar and wind energies, in which the output voltage on the external resistance from the wind driven TENG is used as the gate voltage of the TPT for enhancing the solar energy conversion. As the wind speed increases, the photovoltaic characteristics of the CEH including the short‐circuit current, open‐circuit voltage, and maximal output power have been greatly enhanced. This work has greatly expanded the functionality of tribotronics in photodetection and energy harvesting, and provided a potential solution for highly efficient harvesting and utilizing multitype energy.  相似文献   
8.
利用定点转移技术,制备出二维层状材料石墨烯-黑砷范德华异质结构的光电探测器制备,实现了从可见光-红外-微波的宽频段探测。其中在可见红外光辐射下,黑砷中产生的光激发电子-空穴对被分离并注入石墨烯,显著降低了半导体黑砷和金电极之间的势垒,从而实现了有效的光电流提取;在微波频段下,由于两种材料塞贝克系数差异产生光热电效应而激发非平衡载流子,零偏下形成光电流。研究结果为二维层状材料的带隙工程应用于光子和光电子领域铺平了道路。  相似文献   
9.
分别采用旋涂法和水热法在FTO衬底上制备Co3O4种子层和Co3O4薄膜,再在Co3O4薄膜上水热生长Fe2O3纳米棒,获得了高质量的Co3O4/Fe2O3异质结复合材料。通过改变Fe2O3前驱体溶液浓度来改变异质结复合材料中Fe2O3组分的含量。结果表明,Fe2O3纳米棒覆盖在呈网状结构的Co3O4薄膜上,随着Fe2O3前驱体溶液浓度即Fe2O3组分含量的增加,Co3O4/Fe2O3异质结复合材料对紫外光的响应逐渐增强,当Fe2O3前驱体溶液浓度为0.015mol/L时,异质结复合材料有着很好的光电稳定性,并表现出较高的响应率(12.5mA/W)和探测率(4.4×1010Jones)。  相似文献   
10.
提出一种微弱荧光光电探测的实验装置,同时研究这种系统的噪声产生和抑制问题,信号噪声比的改善使得这种装置可以使用小功率氦氖激光作为激光发条件下探测荧光信号。这些工作为肿瘤早期诊断系统设备的实用化创造了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号